AD7631BCPZ Analog Devices Inc, AD7631BCPZ Datasheet - Page 22

IC,A/D CONVERTER,SINGLE,18-BIT,CMOS,LLCC,48PIN

AD7631BCPZ

Manufacturer Part Number
AD7631BCPZ
Description
IC,A/D CONVERTER,SINGLE,18-BIT,CMOS,LLCC,48PIN
Manufacturer
Analog Devices Inc
Series
PulSAR®r
Datasheet

Specifications of AD7631BCPZ

Number Of Bits
18
Sampling Rate (per Second)
250k
Data Interface
Serial, Parallel
Number Of Converters
1
Power Dissipation (max)
120mW
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
48-VFQFN, CSP Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
AD7631
External 2.5 V Reference and Internal Buffer (REF = 5 V)
(PDREF = High, PDBUF = Low)
To use an external reference with the internal buffer, PDREF
should be high and PDBUF should be low. This powers down
the internal reference and allows the 2.5 V reference to be applied
to REFBUFIN producing 5 V on the REF pin. The internal
reference buffer is useful in multiconverter applications because
a buffer is typically required in these applications to avoid
reference coupling amongst the different converters.
External 5 V Reference (PDREF = High, PDBUF = High)
To use an external reference directly on the REF pin, PDREF
and PDBUF should both be high. PDREF and PDBUF power
down the internal reference and the internal reference buffer,
respectively. For improved drift performance, an external
reference, such as the
Reference Decoupling
Whether using an internal or external reference, the AD7631
voltage reference input (REF) has a dynamic input impedance;
therefore, it should be driven by a low impedance source with
efficient decoupling between the REF and REFGND inputs. This
decoupling depends on the choice of the voltage reference but
usually consists of a low ESR capacitor connected to REF and
REFGND with minimum parasitic inductance. A 22 μF (X5R,
1206 size) ceramic chip capacitor (or 47 μF low ESR tantalum
capacitor) is appropriate when using either the internal
reference or the
The placement of the reference decoupling is also important to
the performance of the AD7631. The decoupling capacitor should
be mounted on the same side as the ADC right at the REF pin
with a thick PCB trace. The REFGND should also connect to
the reference decoupling capacitor with the shortest distance
and to the analog ground plane with several vias.
For applications that use multiple AD7631s or other PulSAR
devices, it is more effective to use the internal reference buffer
to buffer the external 2.5 V reference voltage.
The voltage reference temperature coefficient (TC) directly
impacts full scale; therefore, in applications where full-scale
accuracy matters, care must be taken with the TC. For instance,
a ±4 ppm/°C TC of the reference changes full scale by ±1 LSB/°C.
Temperature Sensor
The TEMP pin measures the temperature of the AD7631. To
improve the calibration accuracy over the temperature range, the
output of the TEMP pin is applied to one of the inputs of the
analog switch (such as ADG779), and the ADC itself is used to
measure its own temperature. This configuration is shown
in Figure 32.
ADR445/ADR435
ADR445
or ADR435, is recommended.
external reference.
Rev. A | Page 22 of 32
POWER SUPPLIES
The AD7631 uses five sets of power supply pins:
Core Supplies
The AVDD and DVDD supply the AD7631 analog and digital
cores, respectively. Sufficient decoupling of these supplies is
required consisting of at least a 10 μF capacitor and a 100 nF
capacitor on each supply. The 100 nF capacitors should be
placed as close as possible to the AD7631. To reduce the number
of supplies needed, the DVDD can be supplied through a simple
RC filter from the analog supply, as shown in Figure 27.
High Voltage Supplies
The high voltage bipolar supplies, VCC and VEE, are required
and must be at least 2 V larger than the maximum input voltage.
For example, if using the ±10 V range, the supplies should be
±12 V minimum. This allows for 40 V p-p fully differential
input (±10 V on each input IN+ and IN−). Sufficient decoupling of
these supplies is also required consisting of at least a 10 μF
capacitor and a 100 nF capacitor on each supply. For unipolar
operation, the VEE supply can be grounded with some slight
THD performance degradation.
Digital Output Supply
The OVDD supplies the digital outputs and allows direct interface
with any logic working between 2.3 V and 5.25 V. OVDD should
be set to the same level as the system interface. Sufficient
decoupling is required consisting of at least a 10 μF capacitor and
a 100 nF capacitor with the 100 nF placed as close as possible
to the AD7631.
ANALOG INPUT
AVDD: analog 5 V core supply
VCC: analog high voltage positive supply
VEE: high voltage negative supply
DVDD: digital 5 V core supply
OVDD: digital input/output interface supply
ADG779
Figure 32. Use of the Temperature Sensor
C
C
IN+
TEMP
AD7631
TEMPERATURE
SENSOR

Related parts for AD7631BCPZ