MC9S08GT16ACFBE Freescale Semiconductor, MC9S08GT16ACFBE Datasheet - Page 95

IC MCU 16K FLASH 2K RAM 44-QFP

MC9S08GT16ACFBE

Manufacturer Part Number
MC9S08GT16ACFBE
Description
IC MCU 16K FLASH 2K RAM 44-QFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08GT16ACFBE

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
36
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-QFP
Cpu Family
HCS08
Device Core Size
8b
Frequency (max)
40MHz
Interface Type
I2C/SCI/SPI
Total Internal Ram Size
2KB
# I/os (max)
36
Operating Supply Voltage (typ)
2.5/3.3V
Operating Supply Voltage (max)
3.6V
Operating Supply Voltage (min)
1.8V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
PQFP
Processor Series
S08GT
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
2 KB
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
36
Operating Supply Voltage
3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
M68EVB908GB60E, M68DEMO908GB60E
Minimum Operating Temperature
- 40 C
For Use With
M68DEMO908GB60E - BOARD DEMO MC9S08GB60M68EVB908GB60E - BOARD EVAL FOR MC9S08GB60
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08GT16ACFBE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GT16ACFBE
Quantity:
480
Part Number:
MC9S08GT16ACFBER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GT16ACFBER
Manufacturer:
FREESCALE
Quantity:
8 000
Part Number:
MC9S08GT16ACFBER
Manufacturer:
NXP/恩智浦
Quantity:
20 000
6.5.5
Port E includes six general-purpose I/O pins that share with the SCI1 and SPI modules. Port E pins used
as general-purpose I/O pins are controlled by the port E data (PTED), data direction (PTEDD), pullup
enable (PTEPE), and slew rate control (PTESE) registers.
If the SCI1 takes control of a port E pin, the corresponding PTEDD bit is ignored. PTESE can be used to
provide slew rate on the SCI1 transmit pin, TxD1. PTEPE can be used, provided the corresponding
PTEDD bit is 0, to provide a pullup device on the SCI1 receive pin, RxD1.
If the SPI takes control of a port E pin, the corresponding PTEDD bit is ignored. PTESE can be used to
provide slew rate on the SPI serial output pin (MOSI or MISO) and serial clock pin (SPSCK) depending
on the SPI operational mode. PTEPE can be used, provided the corresponding PTEDD bit is 0, to provide
a pullup device on the SPI serial input pins (MOSI or MISO) and slave select pin (SS) depending on the
SPI operational mode.
Reads of PTED will return the logic value of the corresponding pin, provided PTEDD is 0.
Freescale Semiconductor
PTED[5:0]
Reset
Field
5:0
W
R
Port E Registers (PTED, PTEPE, PTESE, and PTEDD)
Port E Data Register Bits — For port E pins that are inputs, reads return the logic level on the pin. For port E
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits in this register. For port E pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTED to all 0s, but these 0s are not driven out the corresponding pins because reset also configures
all port pins as high-impedance inputs with pullups disabled.
0
7
0
0
0
6
Figure 6-24. Port E Data Register (PTED)
MC9S08GT16A/GT8A Data Sheet, Rev. 1
Table 6-17. PTED Field Descriptions
PTED5
0
5
PTED4
0
4
Description
PTED3
3
0
PTED2
0
2
PTED1
0
1
Parallel Input/Output
PTED0
0
0
95

Related parts for MC9S08GT16ACFBE