ST72F561J4T6 STMicroelectronics, ST72F561J4T6 Datasheet - Page 132

IC MCU 8BIT 16K FLASH 44-LQFP

ST72F561J4T6

Manufacturer Part Number
ST72F561J4T6
Description
IC MCU 8BIT 16K FLASH 44-LQFP
Manufacturer
STMicroelectronics
Series
ST7r
Datasheet

Specifications of ST72F561J4T6

Core Processor
ST7
Core Size
8-Bit
Speed
8MHz
Connectivity
CAN, LINSCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
3.8 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-LQFP
Processor Series
ST72F5x
Core
ST7
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
CAN, SCI, SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
48
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
STX-RLINK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 16 Channel
For Use With
497-8374 - BOARD DEVELOPMENT FOR ST72F561
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ST72F561J4T6
Manufacturer:
COILCRAFT
Quantity:
4 000
Part Number:
ST72F561J4T6
Manufacturer:
STMicroelectronics
Quantity:
10 000
Part Number:
ST72F561J4T6
Manufacturer:
ST
0
ST72561
LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)
10.7.8 SCI Mode Register Description
STATUS REGISTER (SCISR)
Read Only
Reset Value: 1100 0000 (C0h)
Bit 7 = TDRE Transmit data register empty
This bit is set by hardware when the content of the
TDR register has been transferred into the shift
register. An interrupt is generated if the TIE = 1 in
the SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed
by a write to the SCIDR register).
0: Data is not transferred to the shift register
1: Data is transferred to the shift register
Bit 6 = TC Transmission complete
This bit is set by hardware when transmission of a
character containing Data is complete. An inter-
rupt is generated if TCIE = 1 in the SCICR2 regis-
ter. It is cleared by a software sequence (an ac-
cess to the SCISR register followed by a write to
the SCIDR register).
0: Transmission is not complete
1: Transmission is complete
Note: TC is not set after the transmission of a Pre-
amble or a Break.
Bit 5 = RDRF Received data ready flag
This bit is set by hardware when the content of the
RDR register has been transferred to the SCIDR
register. An interrupt is generated if RIE = 1 in the
SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed
by a read to the SCIDR register).
0: Data is not received
1: Received data is ready to be read
Bit 4 = IDLE Idle line detected
This bit is set by hardware when an Idle Line is de-
tected. An interrupt is generated if the ILIE = 1 in
the SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed
by a read to the SCIDR register).
0: No Idle Line is detected
1: Idle Line is detected
Note: The IDLE bit will not be set again until the
RDRF bit has been set itself (that is, a new idle line
occurs).
132/265
TDRE
7
TC
RDRF
IDLE
OR
1)
NF
1)
FE
1)
PE
0
1)
Bit 3 = OR Overrun error
The OR bit is set by hardware when the word cur-
rently being received in the shift register is ready to
be transferred into the RDR register whereas
RDRF is still set. An interrupt is generated if
RIE = 1 in the SCICR2 register. It is cleared by a
software sequence (an access to the SCISR regis-
ter followed by a read to the SCIDR register).
0: No Overrun error
1: Overrun error detected
Note: When this bit is set, RDR register contents
will not be lost but the shift register will be overwrit-
ten.
Bit 2 = NF Character Noise flag
This bit is set by hardware when noise is detected
on a received character. It is cleared by a software
sequence (an access to the SCISR register fol-
lowed by a read to the SCIDR register).
0: No noise
1: Noise is detected
Note: This bit does not generate interrupt as it ap-
pears at the same time as the RDRF bit which it-
self generates an interrupt.
Bit 1 = FE Framing error
This bit is set by hardware when a desynchroniza-
tion, excessive noise or a break character is de-
tected. It is cleared by a software sequence (an
access to the SCISR register followed by a read to
the SCIDR register).
0: No Framing error
1: Framing error or break character detected
Note: This bit does not generate an interrupt as it
appears at the same time as the RDRF bit which it-
self generates an interrupt. If the word currently
being transferred causes both a frame error and
an overrun error, it will be transferred and only the
OR bit will be set.
Bit 0 = PE Parity error
This bit is set by hardware when a byte parity error
occurs (if the PCE bit is set) in receiver mode. It is
cleared by a software sequence (a read to the sta-
tus register followed by an access to the SCIDR
data register). An interrupt is generated if PIE = 1
in the SCICR1 register.
0: No parity error
1: Parity error detected

Related parts for ST72F561J4T6