ATMEGA128A-AU Atmel, ATMEGA128A-AU Datasheet - Page 19

MCU 8BIT 128K ISP FLASH 64-TQFP

ATMEGA128A-AU

Manufacturer Part Number
ATMEGA128A-AU
Description
MCU 8BIT 128K ISP FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128A-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
On-chip Dac
10 bit, 8 Channel
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
Q4784435

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL
Quantity:
9 000
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL
Quantity:
3 480
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL
Quantity:
3 512
Part Number:
ATMEGA128A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128A-AU
Quantity:
6 944
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7.2
8151H–AVR–02/11
SRAM Data Memory
The Atmel
as listed in
Table 7-1.
Figure 7-2
The ATmega128A is a complex microcontroller with more peripheral units than can be sup-
ported within the 64 location reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used. The Extended I/O space does not exist when the ATmega128A is in the
ATmega103 compatibility mode.
In normal mode, the first 4352 Data Memory locations address both the Register file, the I/O
Memory, Extended I/O Memory, and the internal data SRAM. The first 32 locations address the
Register file, the next 64 location the standard I/O memory, then 160 locations of Extended I/O
memory, and the next 4096 locations address the internal data SRAM.
In ATmega103 compatibility mode, the first 4096 Data Memory locations address both the Reg-
ister file, the I/O Memory and the internal data SRAM. The first 32 locations address the Register
file, the next 64 location the standard I/O memory, and the next 4000 locations address the inter-
nal data SRAM.
An optional external data SRAM can be used with the ATmega128A. This SRAM will occupy an
area in the remaining address locations in the 64K address space. This area starts at the
address following the internal SRAM. The Register file, I/O, Extended I/O and Internal SRAM
occupies the lowest 4352bytes in normal mode, and the lowest 4096bytes in the ATmega103
compatibility mode (Extended I/O not present), so when using 64 Kbytes (65536bytes) of Exter-
nal Memory, 61184Bytes of External Memory are available in normal mode, and 61440Bytes in
ATmega103 compatibility mode. See
to take advantage of the external memory map.
When the addresses accessing the SRAM memory space exceeds the internal data memory
locations, the external data SRAM is accessed using the same instructions as for the internal
data memory access. When the internal data memories are accessed, the read and write strobe
pins (PG0 and PG1) are inactive during the whole access cycle. External SRAM operation is
enabled by setting the SRE bit in the MCUCR Register.
Accessing external SRAM takes one additional clock cycle per byte compared to access of the
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine
calls and returns take three clock cycles extra because the two-byte program counter is pushed
and popped, and external memory access does not take advantage of the internal pipe-line
memory access. When external SRAM interface is used with wait-state, one-byte external
access takes two, three, or four additional clock cycles for one, two, and three wait-states
respectively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles
more than specified in the instruction set manual for one, two, and three wait-states.
Configuration
Normal mode
ATmega103 Compatibility
mode
®
shows how the ATmega128A SRAM Memory is organized.
AVR
Table
Memory Configurations
®
ATmega128A supports two different configurations for the SRAM data memory
7-1.
Internal SRAM Data Memory
“External Memory Interface” on page 22
4096
4000
External SRAM Data Memory
ATmega128A
up to 64K
up to 64K
for details on how
19

Related parts for ATMEGA128A-AU