PIC18F2431-I/SO Microchip Technology, PIC18F2431-I/SO Datasheet - Page 65

IC PIC MCU FLASH 8KX16 28SOIC

PIC18F2431-I/SO

Manufacturer Part Number
PIC18F2431-I/SO
Description
IC PIC MCU FLASH 8KX16 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2431-I/SO

Program Memory Type
FLASH
Program Memory Size
16KB (8K x 16)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
256 x 8
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 5x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
EUSART/I2C/SPI/SSP
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
24
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DM183021, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
5-ch x 10-bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILI3-DB18F4431 - BOARD DAUGHTER ICEPIC3
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2431-I/SO
Manufacturer:
MICROCHIP
Quantity:
2 000
Part Number:
PIC18F2431-I/SO
Manufacturer:
NXP/恩智浦
Quantity:
20 000
6.1.4.2
A better method of storing data in program memory
allows two bytes of data to be stored in each instruction
location. Look-up table data may be stored, two bytes
per program word, by using table reads and writes.
The Table Pointer register (TBLPTR) specifies the byte
address and the Table Latch register (TABLAT) con-
tains the data that is read from or written to program
memory. Data is transferred to or from program
memory, one byte at a time.
Table read and table write operations are discussed
further in
Writes”.
FIGURE 6-4:
6.3
An “Instruction Cycle” consists of four Q cycles (Q1,
Q2, Q3 and Q4). The instruction fetch and execute are
pipelined such that fetch takes one instruction cycle,
while decode and execute take another instruction
cycle. However, due to the pipelining, each instruction
effectively executes in one cycle. If an instruction
causes the program counter to change (e.g., GOTO),
then two cycles are required to complete the instruction
(Example
EXAMPLE 6-3:
 2010 Microchip Technology Inc.
1. MOVLW 55h
2. MOVWF PORTB
3. BRA SUB_1
4. BSF
5. Instruction @ address SUB_1
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.
OSC2/CLKO
(RC mode)
Instruction Flow/Pipelining
6-3).
Section 8.1 “Table Reads and Table
PORTA, BIT3 (Forced NOP)
Table Reads and Table Writes
OSC1
Q4
PC
Q2
Q3
Q1
Q1
CLOCK/INSTRUCTION CYCLE
INSTRUCTION PIPELINE FLOW
Execute INST (PC – 2)
Fetch INST (PC)
Q2
Fetch 1
T
PC
CY
Q3
0
Q4
Execute 1
Fetch 2
PIC18F2331/2431/4331/4431
T
CY
Q1
1
Fetch INST (PC + 2)
Execute INST (PC)
Q2
Execute 2
Fetch 3
PC + 2
T
CY
Q3
2
6.2
The clock input (from OSC1) is internally divided by
four to generate four non-overlapping quadrature
clocks, namely Q1, Q2, Q3 and Q4. Internally, the
Program Counter (PC) is incremented every Q1, the
instruction is fetched from the program memory and
latched into the Instruction Register (IR) in Q4. The
instruction is decoded and executed during the
following Q1 through Q4. The clocks and instruction
execution flow are shown in
A fetch cycle begins with the Program Counter (PC)
incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the “Instruction Register” (IR) in cycle, Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).
Q4
Execute 3
Fetch 4
Clocking Scheme/Instruction
Cycle
T
CY
3
Q1
Execute INST (PC + 2)
Fetch INST (PC + 4)
Fetch SUB_1 Execute SUB_1
Flush (NOP)
Q2
PC + 4
T
CY
Q3
4
Figure
Q4
6-4.
DS39616D-page 65
T
CY
Internal
Phase
Clock
5

Related parts for PIC18F2431-I/SO