ATMEGA32U2-MU Atmel, ATMEGA32U2-MU Datasheet - Page 12

no-image

ATMEGA32U2-MU

Manufacturer Part Number
ATMEGA32U2-MU
Description
MCU AVR USB 32K FLASH IND 32VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32U2-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2.5 KB
Interface Type
SPI, UART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
22
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, AT90USBKEY, ATEVK525
Minimum Operating Temperature
- 40 C
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details
6.6.1
6.7
7799D–AVR–11/10
Instruction Execution Timing
SPH and SPL – Stack Pointer High and Low Register
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk
chip. No internal clock division is used.
Figure 6-4
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.
Figure 6-4.
Figure 6-5
operation using two register operands is executed, and the result is stored back to the destina-
tion register.
Figure 6-5.
Bit
0x3E (0x5E)
0x3D (0x5D)
Read/Write
Initial Value
Register Operands Fetch
2nd Instruction Execute
3rd Instruction Execute
1st Instruction Execute
ALU Operation Execute
2nd Instruction Fetch
3rd Instruction Fetch
4th Instruction Fetch
1st Instruction Fetch
Total Execution Time
shows the internal timing concept for the Register File. In a single clock cycle an ALU
shows the parallel instruction fetches and instruction executions enabled by the Har-
Result Write Back
The Parallel Instruction Fetches and Instruction Executions
Single Cycle ALU Operation
15
SP15
SP7
7
R/W
R/W
0
1
clk
clk
CPU
CPU
14
SP14
SP6
6
R/W
R/W
0
1
13
SP13
SP5
5
R/W
R/W
1
1
CPU
T1
T1
, directly generated from the selected clock source for the
12
SP12
SP4
4
R/W
R/W
0
1
ATmega8U2/16U2/32U2
11
SP11
SP3
3
R/W
R/W
0
1
T2
T2
10
SP10
SP2
2
R/W
R/W
0
1
T3
T3
9
SP9
SP1
1
R/W
R/W
0
1
8
SP8
SP0
0
R/W
R/W
0
1
T4
T4
SPH
SPL
12

Related parts for ATMEGA32U2-MU