ATMEGA169PV-8AU Atmel, ATMEGA169PV-8AU Datasheet - Page 271

IC AVR MCU 16K 8MHZ 1.8V 64-TQFP

ATMEGA169PV-8AU

Manufacturer Part Number
ATMEGA169PV-8AU
Description
IC AVR MCU 16K 8MHZ 1.8V 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA169PV-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
SPI, USART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
8MHz
Total Internal Ram Size
1KB
# I/os (max)
54
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
2.5/3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
1.8V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Package
64TQFP
Family Name
ATmega
Maximum Speed
8 MHz
Operating Supply Voltage
2.5|3.3|5 V
Controller Family/series
AVR MEGA
No. Of I/o's
54
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
8MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATAVRBFLY - KIT EVALUATION AVR BUTTERFLYATSTK502 - MOD EXPANSION AVR STARTER 500ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA169PV-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169PV-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA169PV-8AUR
Manufacturer:
Atmel
Quantity:
10 000
8018P–AVR–08/10
Note:
If the ADC is not to be used during scan, the recommended input values from
page 269
scan. Switch-Cap based differential amplifier requires fast operation and accurate timing which
is difficult to obtain when used in a scan chain. Details concerning operations of the differential
amplifier is therefore not provided.
The AVR ADC is based on the analog circuitry shown in
sive approximation algorithm implemented in the digital logic. When used in Boundary-scan, the
problem is usually to ensure that an applied analog voltage is measured within some limits. This
can easily be done without running a successive approximation algorithm: apply the lower limit
on the digital DAC[9:0] lines, make sure the output from the comparator is low, then apply the
upper limit on the digital DAC[9:0] lines, and verify the output from the comparator to be high.
The ADC need not be used for pure connectivity testing, since all analog inputs are shared with
a digital port pin as well.
When using the ADC, remember the following:
• The port pin for the ADC channel in use must be configured to be an input with pull-up disabled
• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when
• The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low
As an example, consider the task of verifying a 1.5V ±5% input signal at ADC channel 3 when
the power supply is 5.0V and AREF is externally connected to V
The recommended values from
in the algorithm in
are shown. The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done on the
data scanned out when scanning in the data on the same row in the table.
to avoid signal contention.
enabling the ADC. The user is advised to wait at least 200 ns after enabling the ADC before
controlling/observing any ADC signal, or perform a dummy conversion before using the first
result.
(Sample mode).
1. Incorrect setting of the switches in
should be used. The user is recommended not to use the Differential Amplifier during
may damage the part. There are several input choices to the S&H circuitry on the negative
input of the output comparator in
selected from either one ADC pin, Bandgap reference source, or Ground.
The lower limit is:
The upper limit is:
Table 25-4 on page
Table 25-3 on page 269
1024 1.5V 0,95 5V
1024 1.5V 1.05 5V
272. Only the DAC and port pin values of the Scan Chain
Figure 25-9 on page
Figure 25-9 on page 268
Figure 25-9 on page 268
are used unless other values are given
=
=
268. Make sure only one path is
291
323
CC
=
=
will make signal contention and
.
0x123
0x143
ATmega169P
Table 25-3 on
with a succes-
271

Related parts for ATMEGA169PV-8AU