MIKROE-957 mikroElektronika, MIKROE-957 Datasheet - Page 19

no-image

MIKROE-957

Manufacturer Part Number
MIKROE-957
Description
Other Development Tools ASLK PRO ANALOG DEVELOPMENT SYSTEM
Manufacturer
mikroElektronika
Datasheet

Specifications of MIKROE-957

Rohs
yes
Product
Analog System Lab Kit PRO
Tool Is For Evaluation Of
TL082, MPY634
Operating Supply Voltage
2.5 V to 5.5 V
Description/function
Analog Lab Kit for Undergraduate Engineering
Maximum Operating Temperature
+ 125 C
Minimum Operating Temperature
- 40 C
where
and
Q is the quality factor and
frequency of the system. When the frequency response is plotted with magnitude
vs
If one applies a step of peak voltage
rate, then the output appears as shown in Figure 2.4 if
Q is approximately equal to the total number of visible peaks in the step response and
the frequency of ringing is
Slew-rate is known as the maximum rate
at which the output of the OP-Amps is
capable of rising; in other words, slew
rate is the maximum value that dVo/dt
can attain. In this experiment, as we go
on increasing the amplitude of the step
input, at some amplitude the rate at
which the output starts rising remains
constant and no longer increases with
the peak voltage of input; this rate is
V
V
T
GB
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
V
V
V
V
V
A
_
dV
dt
1
0
1
0
0
p
p
p
s
s
0
0
=
=
=
=
-
=
1
=
=
=
$
2
Analog System Lab Kit PRO
-
0
=
"
=
=
Figure 1.3: Magnitude and Phase response of a Unity Gain System
A
V
1
_
`
1
2
1
_
0
~
1 4
2
1
1
1
1
0
2
1
1
1
+
+
Q
and phase vs
A
0
$
=
as A
+
+
+
GB
1
+
(
A
1
0
~
GB
1
V
s
Q
~
0
1
_
1
A
d
A
V
s
2
s GB
d
2
-
A
~
0
0
1
$
i
0
0
A
+
~
~
0
"
V
0
1
Q
d
1
d
2
+
2
A
1
1
)
3
i
A
+
_
+
0
1
s A
s
+
s A
2
GB
~
V
V
T
0
GB
GB
T
~
~
~ ~
V
V GB
V
A
Q
Q
p
Q
p
_
V
V
V
V
s
d
dV
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
V
~
~
_
dt
2
dV
1
0
1
0
0
p
p
p
s
s
1
dt
0
0
0
-
=
=
=
=
=
1
1
=
=
p
p
0
=
p
$
2
~
d
~
-
0
=
"
2
0
0
1
=
=
=
=
1
A
=
+
$
2
d
V
1
_
`
d
1
-
0
2
0
1
1 4
V
V
_
2
T
GB
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
~
V
V
V
=
V
A
2
1
2
_
dV
V
1
1
1
1
0
2
i
1
, it appears as shown in Figure 1.3.
1
dt
1
Q
1
0
+
+
+
p
p
p
V
V
0
s
0
s
A
T
1
s A
A
GB
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
_
V
$
V
V
V
V
0
0
0
dV
=
=
=
=
=
-
+
as A
+
+
=
1
1
dt
1
=
=
GB
$
2
1
=
0
1
+
(
A
0
0
2
GB
p
p
-
0
p
T
=
s
"
s
1
GB
GB
0
0
T
Q
~
1
=
~
Q
1 4
p
~
~ ~
V
V GB
Q
p
V
A
s GB
0
~
0
_
V
V
V
-
=
1
=
=
=
2
1
Q
dV
V
s
1
=
=
=
=
~
=
$
2
-
0
A
0
=
"
1
1
dt
V
1
_
2
1
=
1
1
A
_
`
d
V
A
s
Q
2
0
1
~
1 4
0
+
_
p
p
p
s
s
=
2
1
2
A
1
1
1
0
1
s GB
d
2
0
-
2
1
0
1
0
0
V
=
=
=
A
1
_
`
=
~
1
$
0
0
+
1
+
Q
2
=
1
i
1 4
1
0
0
_
~
A
0
~
=
1
=
1
2
2
$
1
GB
1
A
1
1
0
$
0
=
2
as A
+
~
+
~
1
+
+
1
1
-
0
"
GB
(
~
GB
"
+
+
0
+
=
Q
A
1
0
A
~
GB
V
d
0
$
V
=
V
A
1
T
0
GB
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
_
V
V
V
V
as A
V
V
+
+
1
Q
dV
+
2
~
s
Q
GB
d
Q
1
s
d
+
=
1
dt
(
2
0
A
1
0
1
1
1
+
_
0
~
GB
2
A
0
0
1
A
p
p
p
1
)
s
s
1
+
d
1
V
V
A
1
s
`
1
s
0
0
Q
-
_
3
A
i
=
=
$
=
~
=
=
to the unity gain amplifier, and if
1
d
s GB
2
is the damping factor, and
2
2
1
1 4
_
-
=
0
=
1
~
d
=
$
0
2
~
A
_
+
-
0
1
0
0
A
=
"
_
~
d
$
1
2
V
0
A
1
1
+
1
=
i
1
1
2
0
s
0
s A
2
2
1
1
A
s GB
d
+
~
1
2
-
=
~
A
~
A
s A
~
$
0
+
$
0
d
1
+
Q
.
i
V
0
"
0
1
_
`
0
1
i
A
2
1
1 4
V
_
A
2
s
0
~
0
1
+
~
1
2
0
1
1
+
~
2
1
1
Q
0
2
i j
s A
1
d
1
as A
+
~
"
+
d
1
+
0
+
2
GB
GB
Q
1
V
+
+
2
+
A
~
2
+
1
0
A
)
$
1
1
0
0
=
Q
GB
d
1
3
A
as A
i
0
+
+
1
~
+
d
GB
1
2
+
0
+
+
2
(
1
A
A
1
_
s
1
1
0
1
~
d
GB
Q
)
+
s
Q
3
A
i
1
~
~
~
V
d
0
s A
s
2
Q
1
1
~
0
+
0
1
1
1
2
_
_
_
0
A
1
A
A
+
d
V
A
0
~ ~
d
Figure 1.4: Time Response of an
Amplifier for a step input of size Vp
1
~
1
s
d
s A
s
0
s
~
2
+
s A
s GB
d
2
2
-
1
2
s GB
A
~
$
2
0
0
d
1
GB
~
i
0
0
2
s
A
d
+
+
A
~
$
0
d
+
1
s A
d
+
~
i
~
1
0
0
"
2
2
2
0
GB
~
s
V
A
d
i
~
0
~
+
~
1
2
~
Q
d
1
0
+
1
d
s A
2
s
1
+
0
d
2
"
0
A
1
d
~
~
1
)
0
2
3
~
A
i
d
s
0
2
~
2
1
1
1
s GB
0
Q
+
_
i
d
1
d
d
+
0
0
~
+
~
d
1
s A
2
GB
+
1
d
2
2
~
A
2
1
2
1
2
0
+
s
3
A
i
i
d
+
d
V
V
T
~
+
GB
s A
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
V
V
V
V
V
A
2
1
_
dV
s A
2
+
GB
2
~
dt
_
i
1
0
1
0
d
0
+
p
p
p
s
s
+
~
1
s A
0
0
0
s A
=
=
d
=
0
s GB
=
1
-
2
=
1
=
=
s
=
d
$
2
2
-
0
~
~
=
"
=
2
2
s GB
+
1
$
=
0
A
0
s
0
V
1
_
`
d
~
1
0
~
2
~
2
1
+
_
2
0
~
1 4
2
s A
~
1
2
1
1
1
1
0
2
1
1
0
1
s A
GB
~
+
+
2
+
Q
d
A
d
~
d
0
$
2
=
as A
2
+
d
+
+
2
2
GB
1
or
+
2
(
A
i
i j
1
0
~
GB
0
1
d
+
V
1
s A
s
Q
s
+
~
d
2
$
0
1
~
_
~
1
A
~
d
2
A
V
V
V
s
T
+
GB
GB
T
Q
~
Q
p
~
~ ~
V
V GB
Q
p
V
V
V
V
V
A
s GB
2
_
dV
s GB
$
d
2
-
1
A
0
~
~
1
dt
0
1
0
0
0
s A
1
$
i
0
0
0
0
d
p
p
p
s
s
2
A
0
0
=
=
=
~ ~
2
=
0
+
~
-
~
d
~
=
1
=
=
~
2
=
$
2
s A
i j
0
2
0
0
"
d
-
V
=
"
1
=
0
V
V
T
~
GB
2
GB
T
1
Q
~
Q
p
~
~ ~
V
V GB
Q
p
V
V
V
V
V
A
d
Q
d
_
dV
2
=
1
d
i j
A
2
+
1
2
dt
V
1
1
_
`
1
A
1
0
+
1
1
2
p
p
1
p
)
d
0
s
0
_
s
0
~
1 4
3
i
d
d
0
0
2
1
A
=
1
=
1
=
=
1
0
2
-
1
=
1
1
=
2
+
=
1
$
2
=
2
0
.
_
+
2
+
Q
-
0
=
"
A
+
=
0
0
$
1
s A
~ ~
d
+
i
=
as A
+
+
V
V
+
T
2
=
$
GB
GB
T
GB
~
is the natural
~
~ ~
1
V
V GB
V
+
A
0
Q
Q
p
Q
p
_
(
A
A
V
V
V
V
~
dV
V
1
1
+
0
1
~
GB
1
_
i
`
dt
s A
1
~ ~
s
2
0
1
~
1 4
1
V
0
1
_
s
Q
0
0
+
d
~
1
s A
p
p
1
2
p
1
s
1
s
1
0
2
0
1
1
1
0
1
0
-
=
=
_
s A
=
2
=
GB
~
=
1
1
A
=
+
d
+
d
Q
=
A
A
=
$
2
V
s
d
-
0
$
=
"
2
2
0
=
as A
s GB
d
=
2
-
+
+
0
1
2
+
1
A
s GB
i j
~
GB
(
0
0
+
s
1
=
$
d
i
0
A
1
0
~
GB
A
0
~
~
1
A
d
2
V
V
1
_
`
1
+
~
Q
~
~
s
2
0
1
1 4
_
2
1
~
0
0
0
1
2
"
1
1
2
1
1
_
1
V
0
2
A
i
1
1
1
0
d
0
d
V
A
s
~
d
~
1
Q
+
Q
2
+
1
2
s GB
A
1
2
d
2
-
$
d
d
0
2
=
A
0
~
2
0
0
+
as A
0
+
i
+
+
A
$
1
0
1
1
1
GB
i
)
0
+
+
(
A
3
i
d
~ ~
GB
A
1
A
d
0
+
~
~
~
~
2
1
+
Q
V
2
s
"
_
~
0
i
+
V
0
0
0
1
s A
_
d
1
1
A
1
+
Q
d
slew
V
A
s
1
s A
1
d
d
1
2
2
+
s GB
d
A
2
2
-
1
1
)
A
s
~
$
0
0
d
1
i
0
3
0
+
A
i
s A
s GB
A
+
2
GB
~
+
~
_
~
2
+
"
d
0
0
s A
2
V
1
0
0
2
1
s
+
Q
d
d
d
0
i
1
2
~
~
$
+
s
2
2
1
A
)
+
~
s A
1
1
3
A
i
~
0
GB
~
2
0
+
~
_
d
~
+
2
d
0
1
0
s A
1
s
2
d
s A
+
~
~
d
2
d
d
+
A non-inverting amplifier with a gain of 2 is shown in Figure 1.5 (a).
s
An inverting amplifier with a gain of 2 is shown in Figure 1.5 (b).
Figure 1.6 shows all the three negative feedback amplifier configurations. Figure
1.7 illustrates the frequency response (magnitude and phase) of the three different
negative feedback amplifier topologies. Figure 1.8 shows the output of the three types
of amplifiers for a square-wave input, illustrating the limitations due to slew-rate.
called slew rate. It can therefore be determined by applying a square wave of Vp at
certain high frequency and increasing the magnitude of the input.
2
Figure 1.5: (a) Non-inverting amplifier of gain 2, (b) Inverting amplifier of gain 2
1.1.2 Non-inverting Amplifier
1.1.3 Inverting Amplifier
+
1
2
$
2
0
s A
i
~
0
GB
2
~
d
2
~
+
~
2
i j
1
s A
1
s A
0
+
d
d
s
d
d
~
s GB
2
~
2
2
2
2
+
i j
1
i
0
2
V
+
~
1
d
0
s A
~
2
0
1
G1
~
+
s GB
0
d
d
0
2
2
2
~ ~
i
d
~ ~
2
1
+
0
s A
+
~
d
R
$
1
s GB
Unity gain
d
~
d
1
2
2
s A
d
0
d
V
2
+
2
2
~
$
i j
I
i
~
d
d
s A
U
d
2
2
2
2
1
0
+
i j
$
i
~ ~
~
s A
d
d
1
2
0
R
2
Figure 1.6: Negative Feedback Amplifiers
i j
~ ~
d
d
2
1
i
V
0
F1
~ ~
d
2
d
i
1
d
2
V
i
O
R
1
Non-inverting amp
R
2
U
2
V
I
V
F2
R
R
3
Inverting amplifier
2R
R
4
U
3
page 19
V
O
V
F3

Related parts for MIKROE-957