atmega32u4-16mu ATMEL Corporation, atmega32u4-16mu Datasheet - Page 357

no-image

atmega32u4-16mu

Manufacturer Part Number
atmega32u4-16mu
Description
Atmega32u4 8-bit Avr Microcontroller With 32k Bytes Of Isp Flash And Usb Controller
Manufacturer
ATMEL Corporation
Datasheet
28.6
7766A–AVR–03/08
Addressing the Flash During Self-Programming
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.
• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.
• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.
Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
Note:
The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers
ZL and ZH in the register file, and RAMPZ in the I/O space. The number of bits actually used is
implementation dependent. Note that the RAMPZ register is only implemented when the pro-
gram space is larger than 64K bytes.
Since the Flash is organized in pages (see
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.
The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.
Bit
RAMPZ
ZH (R31)
ZL (R30)
Only one SPM instruction should be active at any time.
23
15
RAMPZ7
Z15
Z7
7
Figure
22
14
RAMPZ6
Z14
Z6
6
28-4. Note that the Page Erase and Page Write operations are
21
13
RAMPZ5
Z13
Z5
5
20
12
RAMPZ4
Z12
Z4
4
Table 29-11 on page
19
11
RAMPZ3
Z11
Z3
3
18
10
RAMPZ2
Z10
Z2
2
370), the Program Counter can
17
9
RAMPZ1
Z9
Z1
1
ATmega32U4
16
8
RAMPZ0
Z8
Z0
0
357

Related parts for atmega32u4-16mu