ATtiny87 Atmel Corporation, ATtiny87 Datasheet - Page 129

no-image

ATtiny87

Manufacturer Part Number
ATtiny87
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny87

Flash (kbytes)
8 Kbytes
Pin Count
20
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Lin
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Input Capture Channels
1
Pwm Channels
9
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny87-A15MZ
Manufacturer:
Atmel
Quantity:
12 127
Part Number:
ATtiny87-A15SZ
Manufacturer:
Atmel
Quantity:
3 722
Part Number:
ATtiny87-A15XZ
Manufacturer:
Atmel
Quantity:
8 895
Part Number:
ATtiny87-SU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
ATtiny87-SUR
Manufacturer:
Atmel
Quantity:
323
Part Number:
ATtiny87-XUR
Manufacturer:
ATMEL
Quantity:
8 272
8265B–AVR–09/10
In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM1[3:0] = 8), or the value in OCR1A (WGM1[3:0] = 9).
The counter has then reached the TOP and changes the count direction. The TCNT1 value
will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct and
frequency correct PWM mode is shown on
quency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is
in the timing diagram shown as a histogram for illustrating the dual-slope operation. The dia-
gram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the
TCNT1 slopes represent compare matches between OCR1A/B and TCNT1. The OC1A/B
interrupt flag will be set when a compare match occurs.
Figure 12-10. Phase and Frequency Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1A/B
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or
ICR1 is used for defining the TOP value, the OC1A or ICF1 flag set when TCNT1 has reached
TOP. The interrupt flags can then be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the
OCR1A/B.
As
metrical in all periods. Since the OCR1A/B Registers are updated at BOTTOM, the length of
the rising and the falling slopes will always be equal. This gives symmetrical output pulses and
is therefore frequency correct.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. How-
ever, if the base PWM frequency is actively changed by changing the TOP value, using the
OCR1A as TOP is clearly a better choice due to its double buffer feature.
Figure 12-10
OCnxi
OCnxi
TCNTn
Period
shows the output generated is, in contrast to the phase correct mode, sym-
1
2
3
Figure
12-10. The figure shows phase and fre-
4
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnx[1:0] = 2)
(COMnx[1:0] = 3)
OCRnx/TOP Update and
TOVn Interrupt Flag Set
(Interrupt on Bottom)
129

Related parts for ATtiny87