P89LV51RD2BBC NXP Semiconductors, P89LV51RD2BBC Datasheet - Page 14

no-image

P89LV51RD2BBC

Manufacturer Part Number
P89LV51RD2BBC
Description
MCU 8-Bit 89LV 80C51 CISC 64KB Flash 3.3V 44-Pin TQFP Tray
Manufacturer
NXP Semiconductors
Datasheet

Specifications of P89LV51RD2BBC

Package
44TQFP
Device Core
80C51
Family Name
89LV
Maximum Speed
40 MHz
Ram Size
1 KB
Program Memory Size
64 KB
Operating Supply Voltage
3.3 V
Data Bus Width
8 Bit
Program Memory Type
Flash
Number Of Programmable I/os
32
Interface Type
SPI/UART
Operating Temperature
0 to 70 °C
Number Of Timers
3

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
P89LV51RD2BBC
Manufacturer:
WCH
Quantity:
1 200
Company:
Part Number:
P89LV51RD2BBC
Quantity:
600
Part Number:
P89LV51RD2BBC,557
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
P89LV51RB2_RC2_RD2_5
Product data sheet
6.2.1 Flash program memory bank selection
6.2.2 Power-on reset code execution
6.2 Memory organization
The device has separate address spaces for program and data memory.
There are two internal flash memory blocks in the device. Block 0 has 16/32/64 kB and is
organized as 128/256/512 sectors, each sector consists of 128 B. Block 1 contains the
IAP/ISP routines and may be enabled such that it overlays the first 8 kB of the user code
memory. The overlay function is controlled by the combination of the Software Reset Bit
(SWR) at FCF.1 and the Bank Select Bit (BSEL) at FCF.0. The combination of these bits
and the memory source used for instructions is shown in
Table 5.
Access to the IAP routines in block 1 may be enabled by clearing the BSEL bit (FCF.0),
provided that the SWR bit (FCF.1) is cleared. Following a power-on sequence, the boot
code is automatically executed and attempts to autobaud to a host. If no autobaud occurs
within approximately 400 ms and the SoftICE flag is not set, control will be passed to the
user code. A software reset is used to accomplish this control transfer and as a result the
SWR bit will remain set. Therefore the user's code will need to clear the SWR bit in
order to access the IAP routines in block 1. However, caution must be taken when
dynamically changing the BSEL bit. Since this will cause different physical memory to be
mapped to the logical program address space, the user must avoid clearing the BSEL bit
when executing user code within the address range 0000H to 1FFFH.
At initial power up, the port pins will be in a random state until the oscillator has started
and the internal reset algorithm has weakly pulled all pins high. Powering up the device
without a valid reset could cause the MCU to start executing instructions from an
indeterminate location. Such undefined states may inadvertently corrupt the code in the
flash. A system reset will not affect the 1 kB of on-chip RAM while the device is running,
however, the contents of the on-chip RAM during power up are indeterminate.
When power is applied to the device, the RST pin must be held high long enough for the
oscillator to start up (usually several milliseconds for a low frequency crystal), in addition
to two machine cycles for a valid power-on reset. An example of a method to extend the
RST signal is to implement a RC circuit by connecting the RST pin to V
capacitor and to V
circuit is used, provision should be made to ensure the V
1 ms and the oscillator start-up time does not exceed 10 ms.
For a low frequency oscillator with slow start-up time the reset signal must be extended in
order to account for the slow start-up time. This method maintains the necessary
relationship between V
which may cause corruption in the Flash code. The power-on detection is designed to
SWR (FCF.1)
0
0
1
1
Code memory bank selection
SS
Rev. 05 — 15 December 2009
through an 8.2 k resistor as shown in
BSEL (FCF.0)
0
1
0
1
DD
and RST to avoid programming at an indeterminate location,
P89LV51RB2/RC2/RD2
Addresses from
0000H to 1FFFH
boot code (in block 1)
user code (in block 0)
8-bit microcontrollers with 80C51 core
DD
Table
rise time does not exceed
Figure
5.
Addresses above
1FFFH
user code (in block 0)
4. Note that if an RC
DD
© NXP B.V. 2009. All rights reserved.
through a 10 F
14 of 76

Related parts for P89LV51RD2BBC