AD9887KS-140 Analog Devices Inc, AD9887KS-140 Datasheet - Page 13

IC INTRFACE ANALOG/DVI 160-MQFP

AD9887KS-140

Manufacturer Part Number
AD9887KS-140
Description
IC INTRFACE ANALOG/DVI 160-MQFP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD9887KS-140

Rohs Status
RoHS non-compliant
Applications
Graphic Cards, VGA Interfaces
Interface
Analog and Digital
Voltage - Supply
3.15 V ~ 3.45 V
Package / Case
160-MQFP, 160-PQFP
Mounting Type
Surface Mount

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9887KS-140
Manufacturer:
ADI
Quantity:
440
Part Number:
AD9887KS-140
Manufacturer:
ADI/亚德诺
Quantity:
20 000
THEORY OF OPERATION AND DESIGN GUIDE
(ANALOG INTERFACE)
General Description
The AD9887 is a fully integrated solution for capturing analog
RGB signals and digitizing them for display on flat panel monitors
or projectors. The device is ideal for implementing a computer
interface in HDTV monitors or as the front end to high-
performance video scan converters.
Implemented in a high-performance CMOS process, the inter-
face can capture signals with pixel rates of up to 140 MHz and,
with an Alternate Pixel Sampling mode, up to 280 MHz.
The AD9887 includes all necessary input buffering, signal dc
restoration (clamping), offset and gain (brightness and contrast)
adjustment, pixel clock generation, sampling phase control,
and output data formatting. All controls are programmable via
a 2-wire serial interface. Full integration of these sensitive analog
functions makes system design straightforward and less sensi-
tive to the physical and electrical environment.
With a typical power dissipation of less than 725 mW and an
operating temperature range of 0°C to 70°C, the device requires
no special environmental considerations.
Input Signal Handling
The AD9887 has three high-impedance analog input pins for
the Red, Green, and Blue channels. They will accommodate
signals ranging from 0.5 V to 1.0 V p-p.
Signals are typically brought onto the interface board via a
DVI-I connector, a 15-lead D connector, or BNC connectors.
The AD9887 should be located as close as practical to the
input connector. Signals should be routed via matched-impedance
traces (normally 75 Ω) to the IC input pins.
At that point the signal should be resistively terminated (75 Ω
to the signal ground return) and capacitively coupled to the
AD9887 inputs through 47 nF capacitors. These capacitors
form part of the dc restoration circuit.
In an ideal world of perfectly matched impedances, the best per-
formance can be obtained with the widest possible signal bandwidth.
The wide bandwidth inputs of the AD9887 (330 MHz) can
track the input signal continuously as it moves from one pixel
level to the next, and digitize the pixel during a long, flat pixel
time. In many systems, however, there are mismatches, reflec-
tions, and noise, which can result in excessive ringing and
distortion of the input waveform. This makes it more difficult
to establish a sampling phase that provides good image quality.
It has been shown that a small inductor in series with the input
is effective in rolling off the input bandwidth slightly, and pro-
viding a high quality signal over a wider range of conditions.
Using a Fair-Rite #2508051217Z0 High-Speed Signal Chip
Bead inductor in the circuit of Figure 1 gives good results in
most applications.
INPUT
RGB
75
47nF
R
G
B
AIN
AIN
AIN
HSYNC, VSYNC Inputs
The AD9887 receives a horizontal sync signal and uses it to
generate the pixel clock and clamp timing. It is possible to operate
the AD9887 without applying HSYNC (using an external clock,
external clamp) but a number of features of the chip will be
unavailable, so it is recommended that HSYNC be provided.
This can be either a sync signal directly from the graphics
source, or a preprocessed TTL or CMOS level signal.
The HSYNC input includes a Schmitt trigger buffer and is capable
of handling signals with long rise times, with superior noise
immunity. In typical PC-based graphic systems, the sync signals
are simply TTL-level drivers feeding unshielded wires in the
monitor cable. As such, no termination is required or desired.
When the VSYNC input is selected as the source for V
used for COAST generation and is passed through to the
VSOUT pin.
Serial Control Port
The serial control port is designed for 3.3 V logic. If there are
5 V drivers on the bus, these pins should be protected with
150 Ω series resistors placed between the pull-up resistors and
the input pins.
Output Signal Handling
The digital outputs are designed and specified to operate from a
3.3 V power supply (V
low as 2.5 V for compatibility with other 2.5 V logic.
Clamping
RGB Clamping
To digitize the incoming signal properly, the dc offset of the
input must be adjusted to fit the range of the on-board A/D
converters.
Most graphics systems produce RGB signals with black at
ground and white at approximately 0.75 V. However, if sync
signals are embedded in the graphics, the sync tip is often at
ground and black is at 300 mV. The white level will then be
approximately 1.0 V. Some common RGB line amplifier boxes
use emitter-follower buffers to split signals and increase drive
capability. This introduces a 700 mV dc offset to the signal, which
is removed by clamping for proper capture by the AD9887.
The key to clamping is to identify a portion (time) of the signal
when the graphic system is known to be producing black. Originating
from CRT displays, the electron beam is “blanked” by sending a
black level during horizontal retrace to prevent disturbing the
image. Most graphics systems maintain this format of sending a
black level between active video lines.
An offset is then introduced which results in the A/D converters
producing a black output (code 00h) when the known black
input is present. The offset then remains in place when other
signal levels are processed, and the entire signal is shifted to
eliminate offset errors.
In systems with embedded sync, a blacker-than-black signal
(HSYNC) is produced briefly to signal the CRT that it is time
to begin a retrace. For obvious reasons, it is important to avoid
DD
). They can also work with a V
AD9887
SYNC
DD
, it is
as

Related parts for AD9887KS-140