CY8C3866AXI-040 Cypress Semiconductor Corp, CY8C3866AXI-040 Datasheet - Page 61

PSOC 3 TQFP

CY8C3866AXI-040

Manufacturer Part Number
CY8C3866AXI-040
Description
PSOC 3 TQFP
Manufacturer
Cypress Semiconductor Corp
Series
PSOC™ 3 CY8C38xxr
Datasheet

Specifications of CY8C3866AXI-040

Package / Case
*
Voltage - Supply (vcc/vdd)
1.71 V ~ 5.5 V
Operating Temperature
-40°C ~ 85°C
Speed
67MHz
Number Of I /o
62
Eeprom Size
2K x 8
Core Processor
8051
Program Memory Type
FLASH
Ram Size
8K x 8
Program Memory Size
64KB (64K x 8)
Data Converters
A/D 2x20b, D/A 4x8b
Oscillator Type
Internal
Peripherals
CapSense, DMA, LCD, POR, PWM, WDT
Connectivity
CAN, EBI/EMI, I²C, LIN, SPI, UART/USART, USB
Core Size
8-Bit
Processor Series
CY8C38
Core
8051
Data Bus Width
32 bit
Data Ram Size
8 KB
Interface Type
I2C, SPI, UART, USB
Maximum Clock Frequency
67 MHz
Number Of Programmable I/os
28 to 72
Number Of Timers
4
Operating Supply Voltage
0.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Controller Family/series
(8051) PSOC 3
No. Of I/o's
62
Eeprom Memory Size
2KB
Ram Memory Size
8KB
Cpu Speed
67MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY8C3866AXI-040
Manufacturer:
Cypress Semiconductor
Quantity:
135
Part Number:
CY8C3866AXI-040
Manufacturer:
NXP
Quantity:
112
Part Number:
CY8C3866AXI-040
Manufacturer:
Cypress Semiconductor Corp
Quantity:
10 000
Part Number:
CY8C3866AXI-040
Manufacturer:
CYPRESS/赛普拉斯
Quantity:
20 000
Company:
Part Number:
CY8C3866AXI-040
Quantity:
10
Part Number:
CY8C3866AXI-040ES2
Manufacturer:
CYPRESS
Quantity:
153
8.11.1 Down Mixer
The SC/CT block can be used as a mixer to down convert an
input signal. This circuit is a high bandwidth passive sample
network that can sample input signals up to 14 MHz. This
sampled value is then held using the opamp with a maximum
clock rate of 4 MHz. The output frequency is at the difference
between the input frequency and the highest integer multiple of
the Local Oscillator that is less than the input.
8.11.2 First Order Modulator – SC Mode
A first order modulator is constructed by placing the SC/CT block
in an integrator mode and using a comparator to provide a 1-bit
feedback to the input. Depending on this bit, a reference voltage
is either subtracted or added to the input signal. The block output
is the output of the comparator and not the integrator in the
modulator case. The signal is downshifted and buffered and then
processed by a decimator to make a delta-sigma converter or a
counter to make an incremental converter. The accuracy of the
sampled data from the first-order modulator is determined from
several factors.
The main application for this modulator is for a low-frequency
ADC with high accuracy. Applications include strain gauges,
thermocouples, precision voltage, and current measurement.
9. Programming, Debug Interfaces,
PSoC devices include extensive support for programming,
testing, debugging, and tracing both hardware and firmware.
Three interfaces are available: JTAG, SWD, and SWV. JTAG and
SWD support all programming and debug features of the device.
JTAG also supports standard JTAG scan chains for board level
test and chaining multiple JTAG devices to a single JTAG
connection.
Complete Debug on Chip (DoC) functionality enables full device
debugging in the final system using the standard production
device. It does not require special interfaces, debugging pods,
simulators, or emulators. Only the standard programming
connections are required to fully support debug.
The PSoC Creator IDE software provides fully integrated
programming and debug support for PSoC devices. The low cost
MiniProg3 programmer and debugger is designed to provide full
programming and debug support of PSoC devices in conjunction
with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV
interfaces are fully compatible with industry standard third party
tools.
All DOC circuits are disabled by default and can only be enabled
in firmware. If not enabled, the only way to reenable them is to
erase the entire device, clear flash protection, and reprogram the
device with new firmware that enables DOC. Disabling DOC
features, robust flash protection, and hiding custom analog and
digital functionality inside the PSoC device provide a level of
security not possible with multichip application solutions.
Additionally, all device interfaces can be permanently disabled
(Device Security) for applications concerned about phishing
Document Number: 001-11729 Rev. *R
Resources
attacks due to a maliciously reprogrammed device. Permanently
disabling interfaces is not recommended in most applications
because you cannot access the device later. Because all
programming, debug, and test interfaces are disabled when
device security is enabled, PSoCs with Device Security enabled
may not be returned for failure analysis.
Table 9-1. Debug Configurations
9.1 JTAG Interface
The IEEE 1149.1 compliant JTAG interface exists on four or five
pins (the nTRST pin is optional). The JTAG clock frequency can
be up to 8 MHz, or 1/3 of the CPU clock frequency for 8 and 16-bit
transfers, or 1/5 of the CPU clock frequency for 32-bit transfers,
whichever is least. By default, the JTAG pins are enabled on new
devices but the JTAG interface can be disabled, allowing these
pins to be used as General Purpose I/O (GPIO) instead. The
JTAG interface is used for programming the flash memory,
debugging, I/O scan chains, and JTAG device chaining.
9.2 Serial Wire Debug Interface
The SWD interface is the preferred alternative to the JTAG
interface. It requires only two pins instead of the four or five
needed by JTAG. SWD provides all of the programming and
debugging features of JTAG at the same speed. SWD does not
provide access to scan chains or device chaining. The SWD
clock frequency can be up to 1/3 of the CPU clock frequency.
SWD uses two pins, either two of the JTAG pins (TMS and TCK)
or the USBIO D+ and D– pins. The USBIO pins are useful for in
system programming of USB solutions that would otherwise
require a separate programming connector. One pin is used for
the data clock and the other is used for data input and output.
SWD can be enabled on only one of the pin pairs at a time. This
only happens if, within 8 µs (key window) after reset, that pin pair
(JTAG or USB) receives a predetermined sequence of 1s and 0s.
SWD is used for debugging or for programming the flash
memory.
The SWD interface can be enabled from the JTAG interface or
disabled, allowing its pins to be used as GPIO. Unlike JTAG, the
SWD interface can always be reacquired on any device during
the key window. It can then be used to reenable the JTAG
interface, if desired. When using SWD or JTAG pins as standard
GPIO, make sure that the GPIO functionality and PCB circuits do
not interfere with SWD or JTAG use.
All debug and trace disabled
JTAG
SWD
SWV
SWD + SWV
Debug and Trace Configuration
PSoC
®
3: CY8C38 Family
GPIO Pins Used
Data Sheet
Page 61 of 129
4 or 5
0
2
1
3
[+] Feedback

Related parts for CY8C3866AXI-040