MCF52110CVM80J Freescale Semiconductor, MCF52110CVM80J Datasheet - Page 10

no-image

MCF52110CVM80J

Manufacturer Part Number
MCF52110CVM80J
Description
IC MCU 128K FLASH 80MHZ 81MAPBGA
Manufacturer
Freescale Semiconductor
Series
MCF521xxr
Datasheet

Specifications of MCF52110CVM80J

Core Processor
Coldfire V2
Core Size
32-Bit
Speed
80MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
DMA, LVD, POR, PWM, WDT
Number Of I /o
56
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
81-MAPBGA
Processor Series
MCF521x
Core
ColdFire V2
3rd Party Development Tools
JLINK-CF-BDM26, EWCF
Development Tools By Supplier
M52210DEMO, M52211EVB
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF52110CVM80J
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
1.2.9
The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability.
It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.
1.2.10
The fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding
separate 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.
The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly
until manually stopped.
The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight
channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a
scan, depending on the inputs to be sampled.
During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This
configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.
Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low
threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.
1.2.11
There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the device. Each
module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to
operate from the system clock or from an external clock source using one of the DTINn signals. If the system clock is selected,
it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual
timer counter register (TCRn). Each of these timers can be configured for input capture or reference (output) compare mode.
Timer events may optionally cause interrupt requests or DMA transfers.
1.2.12
The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a
seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare.
Additionally, channel three, can be configured as a pulse accumulator.
A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter.
The input capture and output compare functions allow simultaneous input waveform measurements and output waveform
generation. The input capture function can capture the time of a selected transition edge. The output compare function can
generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a
gated time accumulator.
1.2.13
The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal
processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running
down-counter.
Freescale Semiconductor
QSPI
Fast ADC
DMA Timers (DTIM0–DTIM3)
General Purpose Timer (GPT)
Periodic Interrupt Timers (PIT0 and PIT1)
MCF52110 ColdFire Microcontroller, Rev. 1
Family Configurations
10

Related parts for MCF52110CVM80J