ATMEGA8535-16PU Atmel, ATMEGA8535-16PU Datasheet - Page 106

IC AVR MCU 8K 16MHZ 5V 40DIP

ATMEGA8535-16PU

Manufacturer Part Number
ATMEGA8535-16PU
Description
IC AVR MCU 8K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA8535-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
512 Bytes
Input Output
32
Interface
SPI/TWI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
40-pin PDIP
Programmable Memory
8K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
512Byte
Rohs Compliant
Yes
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8535-16PU
Manufacturer:
ATMEL
Quantity:
1 500
Part Number:
ATMEGA8535-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
106
ATmega8535(L)
In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A
(WGM13:0 = 9). The counter has then reached the TOP and changes the count direc-
tion. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing
diagram for the phase correct and frequency correct PWM mode is shown in Figure 48.
The figure shows phase and frequency correct PWM mode when OCR1A or ICR1 is
used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare
matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a Com-
pare Match occurs.
Figure 48. Phase and Frequency Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the
OCR1x Registers are updated with the double buffer value (at BOTTOM). When either
OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag set when
TCNT1 has reached TOP. The interrupt flags can then be used to generate an interrupt
each time the counter reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the compare registers. If the TOP value is lower
than any of the compare registers, a Compare Match will never occur between the
TCNT1 and the OCR1x.
As Figure 48 shows the output generated is, in contrast to the phase correct mode, sym-
metrical in all periods. Since the OCR1x Registers are updated at BOTTOM, the length
of the rising and the falling slopes will always be equal. This gives symmetrical output
pulses and the frequency is, therefore, correct.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By
using ICR1, the OCR1A Register is free to be used for generating a PWM output on
OC1A. However, if the base PWM frequency is actively changed by changing the TOP
value, using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.
TCNTn
OCnx
OCnx
Period
1
2
3
4
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
OCRnx/TOP Update and
TOVn Interrupt Flag Set
(Interrupt on Bottom)
(COMnx1:0 = 2)
(COMnx1:0 = 3)
2502G–AVR–04/05

Related parts for ATMEGA8535-16PU