ATMEGA329V-8AU Atmel, ATMEGA329V-8AU Datasheet - Page 7

IC AVR MCU 32K 8MHZ 64TQFP

ATMEGA329V-8AU

Manufacturer Part Number
ATMEGA329V-8AU
Description
IC AVR MCU 32K 8MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA329V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
8 MIPS
Eeprom Memory
1K Bytes
Input Output
54
Interface
SPI/UART/USART/USI
Memory Type
Flash
Number Of Bits
8
Package Type
100-pin TQFP
Programmable Memory
32K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
2.7-5.5 V
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, USART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA329V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA329V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Port E (PE7..PE0)
Port F (PF7..PF0)
Port G (PG5..PG0)
Port H (PH7..PH0)
Port J (PJ6..PJ0)
RESET
XTAL1
2552H–AVR–11/06
P o r t D a l s o s e r v e s t h e f u n c t i o n s o f v a r i o u s s p e c i a l f e a t u r e s o f t h e
ATmega329/3290/649/6490 as listed on page 73.
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
P o r t E a l s o s e r v e s t h e f u n c t i o n s o f v a r i o u s s p e c i a l f e a t u r e s o f t h e
ATmega329/3290/649/6490 as listed on page 75.
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-
tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset
occurs.
Port F also serves the functions of the JTAG interface.
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
P o r t G a l s o s e r v e s t h e f u n c t i o n s o f v a r i o u s s p e c i a l f e a t u r e s o f t h e
ATmega329/3290/649/6490 as listed on page 75.
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port H output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port H pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port H also serves the functions of various special features of the ATmega3290/6490 as
listed on page 75.
Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port J output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port J pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port J also serves the functions of various special features of the ATmega3290/6490 as
listed on page 75.
Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
16 on page 41. Shorter pulses are not guaranteed to generate a reset.
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
ATmega329/3290/649/6490
7

Related parts for ATMEGA329V-8AU