ATMEGA329V-8AU Atmel, ATMEGA329V-8AU Datasheet - Page 239

IC AVR MCU 32K 8MHZ 64TQFP

ATMEGA329V-8AU

Manufacturer Part Number
ATMEGA329V-8AU
Description
IC AVR MCU 32K 8MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA329V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
8 MIPS
Eeprom Memory
1K Bytes
Input Output
54
Interface
SPI/UART/USART/USI
Memory Type
Flash
Number Of Bits
8
Package Type
100-pin TQFP
Programmable Memory
32K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
2.7-5.5 V
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, USART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA329V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA329V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Using the Boundary-
scan Chain
Using the On-chip Debug
System
2552H–AVR–11/06
As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.
Note:
For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 241.
A complete description of the Boundary-scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 242.
As shown in Figure 106, the hardware support for On-chip Debugging consists mainly of
All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.
The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, two Program Memory Break Points, and two combined Break Points. Together,
the four Break Points can be configured as either:
A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.
state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the
state machine.
At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the
Shift Data Register – Shift-DR state. While in this state, upload the selected Data
Register (selected by the present JTAG instruction in the JTAG Instruction Register)
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of
the data is shifted in when this state is left by setting TMS high. While the Data
Register is shifted in from the TDI pin, the parallel inputs to the Data Register
captured in the Capture-DR state is shifted out on the TDO pin.
Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating
the state machine.
A scan chain on the interface between the internal AVR CPU and the internal
peripheral units.
Break Point unit.
Communication interface between the CPU and JTAG system.
4 single Program Memory Break Points.
3 Single Program Memory Break Point + 1 single Data Memory Break Point.
2 single Program Memory Break Points + 2 single Data Memory Break Points.
2 single Program Memory Break Points + 1 Program Memory Break Point with mask
(“range Break Point”).
2 single Program Memory Break Points + 1 Data Memory Break Point with mask
(“range Break Point”).
Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can
always be entered by holding TMS high for five TCK clock periods.
ATmega329/3290/649/6490
239

Related parts for ATMEGA329V-8AU