ATMEGA329V-8AU Atmel, ATMEGA329V-8AU Datasheet - Page 59

IC AVR MCU 32K 8MHZ 64TQFP

ATMEGA329V-8AU

Manufacturer Part Number
ATMEGA329V-8AU
Description
IC AVR MCU 32K 8MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA329V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
8 MIPS
Eeprom Memory
1K Bytes
Input Output
54
Interface
SPI/UART/USART/USI
Memory Type
Flash
Number Of Bits
8
Package Type
100-pin TQFP
Programmable Memory
32K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
2.7-5.5 V
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, USART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA329V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA329V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
I/O-Ports
Introduction
2552H–AVR–11/06
All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. Port B has a higher pin driver
strength than the other ports, but all the pin drivers are strong enough to drive LED dis-
plays directly. All port pins have individually selectable pull-up resistors with a supply-
voltage invariant resistance. All I/O pins have protection diodes to both V
as indicated in Figure 23. Refer to “Electrical Characteristics” on page 313 for a com-
plete list of parameters. If exceeding the pin voltage “Absolute Maximum Ratings”,
resulting currents can harm the device if not limited accordingly. For segment pins used
as general I/O, the same situation can also influence the LCD voltage level.
Figure 23. I/O Pin Equivalent Schematic
All registers and bit references in this section are written in general form. A lower case
“x” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally
as PORTxn. The physical I/O Registers and bit locations are listed in “Register Descrip-
tion for I/O-Ports” on page 86.
Three I/O memory address locations are allocated for each port, one each for the Data
Register – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. However, writing a logic one to a bit in the PINx Register, will
result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up
Disable – PUD bit in MCUCR disables the pull-up function for all pins in all ports when
set.
Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on
page 60. Most port pins are multiplexed with alternate functions for the peripheral fea-
tures on the device. How each alternate function interferes with the port pin is described
Pxn
C
pin
ATmega329/3290/649/6490
"General Digital I/O" for
See Figure
R
Details
pu
Logic
CC
and Ground
59

Related parts for ATMEGA329V-8AU