PIC18F46K20-E/P Microchip Technology, PIC18F46K20-E/P Datasheet - Page 185

IC, 8BIT MCU, PIC18F, 64MHZ, DIP-40

PIC18F46K20-E/P

Manufacturer Part Number
PIC18F46K20-E/P
Description
IC, 8BIT MCU, PIC18F, 64MHZ, DIP-40
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F46K20-E/P

Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
1024Byte
Ram Memory Size
3936Byte
Cpu Speed
64MHz
No. Of Timers
4
Core Size
8 Bit
Program Memory Size
32768 Words
Core Processor
PIC
Speed
48MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 14x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3936 B
Interface Type
CCP, ECCP, EUSART, I2C, MSSP, SPI
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
36
Number Of Timers
4
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 14 Channel
Package
40PDIP
Device Core
PIC
Family Name
PIC18
Maximum Speed
64 MHz
Operating Supply Voltage
2.5|3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164112 - VOLTAGE LIMITER MPLAB ICD2 VPPDM164124 - KIT STARTER FOR PIC18F4XK20
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F46K20-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
16.4.6
In Half-Bridge applications where all power switches
are modulated at the PWM frequency, the power
switches normally require more time to turn off than to
turn on. If both the upper and lower power switches are
switched at the same time (one turned on, and the
other turned off), both switches may be on for a short
period of time until one switch completely turns off.
During this brief interval, a very high current
(shoot-through current) will flow through both power
switches, shorting the bridge supply. To avoid this
potentially destructive shoot-through current from
flowing during switching, turning on either of the power
switches is normally delayed to allow the other switch
to completely turn off.
In Half-Bridge mode, a digitally programmable
dead-band delay is available to avoid shoot-through
current from destroying the bridge power switches. The
delay occurs at the signal transition from the non-active
state to the active state. See Figure 16-12 for
illustration. The lower seven bits of the associated
PWM1CON register (Register 16-3) sets the delay
period in terms of microcontroller instruction cycles
(T
FIGURE 16-13:
 2010 Microchip Technology Inc.
CY
Standard Half-Bridge Circuit (“Push-Pull”)
or 4 T
OSC
PROGRAMMABLE DEAD-BAND
DELAY MODE
).
EXAMPLE OF HALF-BRIDGE APPLICATIONS
P1A
P1B
FET
Driver
FET
Driver
FIGURE 16-12:
PIC18F2XK20/4XK20
P1A
P1B
td = Dead-Band Delay
Note 1: At this time, the TMR2 register is equal to the
(2)
(2)
V+
V-
2: Output signals are shown as active-high.
(1)
td
Pulse Width
PR2 register.
Load
Period
td
EXAMPLE OF
HALF-BRIDGE PWM
OUTPUT
+
V
-
+
V
-
(1)
DS41303G-page 185
Period
(1)

Related parts for PIC18F46K20-E/P