ST72264G2 STMicroelectronics, ST72264G2 Datasheet - Page 90

no-image

ST72264G2

Manufacturer Part Number
ST72264G2
Description
8-bit MCU
Manufacturer
STMicroelectronics
Datasheet

Specifications of ST72264G2

4 K Or 8 Kbytes Program Memory
ROM or single voltage extended Flash (XFlash) with read-out protection, write protection, In-Circuit Programming and In-Application Programming (ICP and IAP). 10K write/erase cycles guaranteed, data retention
Clock Sources
crystal/ceramic resonator oscillators, internal RC oscillator and bypass for external clock
4 Power Saving Modes
Halt, Active Halt,Wait and Slow
Two 16-bit Timers With
2 input captures, 2 output compares, external clock input on one timer, PWM and Pulse generator modes
ST72260Gx, ST72262Gx, ST72264Gx
SERIAL COMMUNICATIONS INTERFACE (Cont’d)
11.5.4.2 Transmitter
The transmitter can send data words of either 8 or
9 bits depending on the M bit status. When the M
bit is set, word length is 9 bits and the 9th bit (the
MSB) has to be stored in the T8 bit in the SCICR1
register.
Character Transmission
During an SCI transmission, data shifts out least
significant bit first on the TDO pin. In this mode,
the SCIDR register consists of a buffer (TDR) be-
tween the internal bus and the transmit shift regis-
ter (see
Procedure
– Select the M bit to define the word length.
– Select the desired baud rate using the SCIBRR
– Set the TE bit to assign the TDO pin to the alter-
– Access the SCISR register and write the data to
Clearing the TDRE bit is always performed by the
following software sequence:
1. An access to the SCISR register
2. A write to the SCIDR register
The TDRE bit is set by hardware and it indicates:
– The TDR register is empty.
– The data transfer is beginning.
– The next data can be written in the SCIDR regis-
This flag generates an interrupt if the TIE bit is set
and the I bit is cleared in the CCR register.
When a transmission is taking place, a write in-
struction to the SCIDR register stores the data in
the TDR register and which is copied in the shift
register at the end of the current transmission.
When no transmission is taking place, a write in-
struction to the SCIDR register places the data di-
rectly in the shift register, the data transmission
starts, and the TDRE bit is immediately set.
90/172
and the SCIETPR registers.
nate function and to send a idle frame as first
transmission.
send in the SCIDR register (this sequence clears
the TDRE bit). Repeat this sequence for each
data to be transmitted.
ter without overwriting the previous data.
Figure
53).
When a frame transmission is complete (after the
stop bit or after the break frame) the TC bit is set
and an interrupt is generated if the TCIE is set and
the I bit is cleared in the CCR register.
Clearing the TC bit is performed by the following
software sequence:
1. An access to the SCISR register
2. A write to the SCIDR register
Note: The TDRE and TC bits are cleared by the
same software sequence.
Break Characters
Setting the SBK bit loads the shift register with a
break character. The break frame length depends
on the M bit (see
As long as the SBK bit is set, the SCI send break
frames to the TDO pin. After clearing this bit by
software the SCI insert a logic 1 bit at the end of
the last break frame to guarantee the recognition
of the start bit of the next frame.
Idle Characters
Setting the TE bit drives the SCI to send an idle
frame before the first data frame.
Clearing and then setting the TE bit during a trans-
mission sends an idle frame after the current word.
Note: Resetting and setting the TE bit causes the
data in the TDR register to be lost. Therefore the
best time to toggle the TE bit is when the TDRE bit
is set i.e. before writing the next byte in the SCIDR.
Figure
54).

Related parts for ST72264G2