ATxmega64B3 Atmel Corporation, ATxmega64B3 Datasheet - Page 13

no-image

ATxmega64B3

Manufacturer Part Number
ATxmega64B3
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATxmega64B3

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
32 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
36
Ext Interrupts
36
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
1
Uart
1
Segment Lcd
100
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
2000
Analog Comparators
2
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
AES/DES
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.6 to 3.6
Operating Voltage (vcc)
1.6 to 3.6
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
6
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATxmega64B3-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega64B3-AUR
Manufacturer:
Atmel
Quantity:
10 000
7.3
7.3.1
7.3.2
7.3.3
8074A–AVR–10/11
Flash Program Memory
Application Section
Application Table Section
Boot Loader Section
The Atmel
for program storage. The flash memory can be accessed for read and write from an external pro-
grammer through the PDI or from application software running in the device.
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The
flash memory is organized in two main sections, the application section and the boot loader sec-
tion. The sizes of the different sections are fixed, but device-dependent. These two sections
have separate lock bits, and can have different levels of protection. The store program memory
(SPM) instruction, which is used to write to the flash from the application software, will only oper-
ate when executed from the boot loader section.
The application section contains an application table section with separate lock settings. This
enables safe storage of nonvolatile data in the program memory.
Figure 7-1.
The Application section is the section of the flash that is used for storing the executable applica-
tion code. The protection level for the application section can be selected by the boot lock bits
for this section. The application section can not store any boot loader code since the SPM
instruction cannot be executed from the application section.
The application table section is a part of the application section of the flash memory that can be
used for storing data. The size is identical to the boot loader section. The protection level for the
application table section can be selected by the boot lock bits for this section. The possibilities
for different protection levels on the application section and the application table section enable
safe parameter storage in the program memory. If this section is not used for data, application
code can reside here.
While the application section is used for storing the application code, the boot loader software
must be located in the boot loader section because the SPM instruction can only initiate pro-
gramming when executing from this section. The SPM instruction can access the entire flash,
including the boot loader section itself. The protection level for the boot loader section can be
selected by the boot loader lock bits. If this section is not used for boot loader software, applica-
tion code can be stored here.
®
AVR
Flash Program Memory (Hexadecimal address)
®
XMEGA
Word Address
®
devices contain on-chip, in-system reprogrammable flash memory
10FFF
10000
EFFF
FFFF
F000
/
/
/
/
/
7FFF
77FF
87FF
7800
8000
0
Application Table Section
Application Section
Boot Section
(128K/64K)
(8K/4K)
(8K/4K)
XMEGA B3
...
13

Related parts for ATxmega64B3