ATtiny261 Atmel Corporation, ATtiny261 Datasheet - Page 19

no-image

ATtiny261

Manufacturer Part Number
ATtiny261
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny261

Flash (kbytes)
2 Kbytes
Pin Count
20
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
4
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny261-15MAZ
Manufacturer:
TI
Quantity:
15
Part Number:
ATtiny261-15MZ
Manufacturer:
ATMEL
Quantity:
5 000
Part Number:
ATtiny261-15MZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny261-15XZ
Manufacturer:
Micrel
Quantity:
116
Part Number:
ATtiny261-20MU
Manufacturer:
AVNET
Quantity:
20 000
Part Number:
ATtiny261-20PU
Manufacturer:
ATMEL
Quantity:
256
Part Number:
ATtiny261-20SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny261-XZ
Manufacturer:
ATMEL
Quantity:
5
Company:
Part Number:
ATtiny261A-SU
Quantity:
7 000
Company:
Part Number:
ATtiny261V-10MU
Quantity:
496
Part Number:
ATtiny261V-10SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
5.3.7
2588E–AVR–08/10
Preventing EEPROM Corruption
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.
Note:
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V
Assembly Code Example
C Code Example
EEPROM_read:
unsigned char EEPROM_read(unsigned char ucAddress)
{
}
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from data register
in
ret
/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
/* Set up address register */
EEAR = ucAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;
See
;
“Code Examples” on page
r16,EEDR
CC
, the EEPROM data can be corrupted because the supply voltage is
6.
CC
reset protection circuit can
19

Related parts for ATtiny261