ATmega64 Atmel Corporation, ATmega64 Datasheet - Page 209

no-image

ATmega64

Manufacturer Part Number
ATmega64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
ATM
Quantity:
5 400
Part Number:
ATmega64-16AU
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
3 589
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATmega64-16AU
Quantity:
33
Part Number:
ATmega64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16MI
Manufacturer:
ATMEL
Quantity:
260
Part Number:
ATmega640-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega640-16AU
Quantity:
80
Using the TWI
Figure 95. Interfacing the Application to the TWI in a Typical Transmission
2490Q–AVR–06/10
TWI bus
1. Application writes
to TWCR to initiate
transmission of
START
START condition sent
Status code indicates
2. TWINT set.
START
TWDR, and loads appropriate control
signals into TWCR, making sure that
3. Check TWSR to see if START was
sent. Application loads SLA+W into
• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in
order to detect actions on the TWI bus.
When the TWINT flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR registers.
Figure 95
example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.
1. The first step in a TWI transmission is to transmit a START condition. This is done by
2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and
3. The application software should now examine the value of TWSR, to make sure that the
TWINT is written to one, and
TWSTA is written to zero.
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
is a simple example of how the application can interface to the TWI hardware. In this
SLA+W
Status code indicates
SLA+W sent, ACK
4. TWINT set.
received
A
5. Check TWSR to see if SLA+W was
and loads appropriate control signals
Application loads data into TWDR,
into TWCR, making sure that
sent and ACK received.
TWINT is written to one
Data
data sent, ACK received
Status code indicates
6. TWINT set.
A
7. Check TWSR to see if data was sent
and ACK received. Application loads
STOP into TWCR, making sure that
appropriate control signals to send
TWINT is written to one
ATmega64(L)
STOP
TWINT set
Indicates
209

Related parts for ATmega64