AT90PWM1 Atmel Corporation, AT90PWM1 Datasheet - Page 41

no-image

AT90PWM1

Manufacturer Part Number
AT90PWM1
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90PWM1

Flash (kbytes)
8 Kbytes
Pin Count
24
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
19
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Spi
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
2
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 105
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
1
Pwm Channels
7
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90PWM1-16SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90PWM161-16MN
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90PWM161-WN
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
8.6.4
8.6.5
8.6.6
8.6.7
4378C–AVR–09/08
Internal Voltage Reference
Watchdog Timer
Port Pins
On-chip Debug System
nificantly to the total current consumption. Refer to
on how to configure the Brown-out Detector.
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to
age Reference” on page 47
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clk
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section
input buffer is enabled and the input signal is left floating or have an analog signal level close to
V
For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to V
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to “Digital Input Disable Register 1– DIDR1” and “Digital Input Disable Register 0
– DIDR0” on
If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.
CC
/2, the input buffer will use excessive power.
page 180
“Watchdog Timer” on page 48
CC
I/O
/2 on an input pin can cause significant current even in active mode. Digital
) and the ADC clock (clk
and
page 199
for details on the start-up time.
“I/O-Ports” on page 58
for details.
ADC
for details on how to configure the Watchdog Timer.
) are stopped, the input buffers of the device will
“Brown-out Detection” on page 45
for details on which pins are enabled. If the
AT90PWM1
“Internal Volt-
for details
41

Related parts for AT90PWM1