AM486DX2-66V16BHC AMD (ADVANCED MICRO DEVICES), AM486DX2-66V16BHC Datasheet - Page 36

no-image

AM486DX2-66V16BHC

Manufacturer Part Number
AM486DX2-66V16BHC
Description
Manufacturer
AMD (ADVANCED MICRO DEVICES)
Datasheet

Specifications of AM486DX2-66V16BHC

Family Name
Am486
Device Core Size
32b
Frequency (max)
66MHz
Instruction Set Architecture
RISC
Supply Voltage 1 (typ)
3.3V
Operating Supply Voltage (max)
3.6V
Operating Supply Voltage (min)
3V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
208
Package Type
SQFP
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM486DX2-66V16BHC
Manufacturer:
AMD
Quantity:
1 000
Part Number:
AM486DX2-66V16BHC
Manufacturer:
AMD
Quantity:
1 000
Part Number:
AM486DX2-66V16BHC
Manufacturer:
AMD
Quantity:
20 000
36
To achieve the lowest possible power consumption dur-
ing the Stop Grant state, the system designer must en-
sure that the input signals with pull-up resistors are not
driven Low, and the input signals with pull-down resis-
tors are not driven High.
All inputs except data bus pins must be driven to the
power supply rails to ensure the lowest possible current
consumption during Stop Grant or Stop Clock modes.
For compatibility, data pins must be driven Low to
achieve the lowest possible power consumption.
4.5
Figure 20 shows the state transitions during a Stop
Clock cycle.
4.5.1 Normal State
This is the normal operating state of the CPU. While in
the normal state, the CLK input can be dynamically
changed within the specified CLK period stability limits.
4.5.2 Stop Grant State
The Stop Grant state provides a low-power state that
can be entered by simply asserting the external STPCLK
interrupt pin. When the Stop Grant bus cycle has been
placed on the bus, and either RDY or BRDY is returned,
the CPU is in this state. The CPU returns to the normal
execution state 10–20 clock cycles after STPCLK has
been deasserted.
While in the Stop Grant state, the pull-up resistors on
STPCLK and UP are disabled internally. The system
must continue to drive these inputs to the state they
were in immediately before the CPU entered the Stop
Grant State. For minimum CPU power consumption, all
other input pins should be driven to their inactive level
while the CPU is in the Stop Grant state.
.
CLK
STPCLK
ADDR
RDY
Clock Control State Diagram
t
20
Enhanced Am486DX Microprocessor Family
t
21
Figure 19. Entering Stop Grant State
P R E L I M I N A R Y
A RESET or SRESET brings the CPU from the Stop
Grant state to the Normal state. The CPU recognizes
the inputs required for cache invalidations (HOLD,
AHOLD, BOFF, and EADS) as explained later. The CPU
does not recognize any other inputs while in the Stop
Grant state. Input signals to the CPU are not recognized
until 1 clock after STPCLK is deasserted (see Figure 21).
While in the Stop Grant state, the CPU does not recog-
nize transitions on the interrupt signals (SMI, NMI, and
INTR). Driving an active edge on either SMI or NMI does
not guarantee recognition and service of the interrupt
request following exit from the Stop Grant state. How-
ever, if one of the interrupt signals (SMI, NMI, or INTR)
is driven active while the CPU is in the Stop Grant state,
and held active for at least one CLK after STPCLK is
deasserted, the corresponding interrupt will be serviced.
The Enhanced Am486DX microprocessors require
INTR to be held active until the CPU issues an interrupt
acknowledge cycle to guarantee recognition. This con-
dition also applies to the existing Am486 CPUs.
In the Stop Grant state, the system can stop or change
the CLK input. When the clock stops, the CPU enters
the Stop Clock state. The CPU returns to the Stop Grant
state immediately when the CLK input is restarted. You
must hold the STPCLK input Low until a stabilized fre-
quency has been maintained for at least 1 ms to ensure
that the PLL has had sufficient time to stabilize.
The CPU generates a Stop Grant bus cycle when en-
tering the state from the Normal or the Auto HALT Power
Down state. When the CPU enters the Stop Grant state
from the Stop Clock state or the Stop Clock Snoop state,
the CPU does not generate a Stop Grant bus cycle.
Stop Grant Bus cycle

Related parts for AM486DX2-66V16BHC