DSPIC30F2010-30I/SO Microchip Technology, DSPIC30F2010-30I/SO Datasheet - Page 11

IC DSPIC MCU/DSP 12K 28SOIC

DSPIC30F2010-30I/SO

Manufacturer Part Number
DSPIC30F2010-30I/SO
Description
IC DSPIC MCU/DSP 12K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2010-30I/SO

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
20
Program Memory Size
12KB (4K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
20
Flash Memory Size
12KB
Supply Voltage Range
2.5V To 5.5V
Package
28SOIC W
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
20
Interface Type
I2C/SPI/UART
On-chip Adc
6-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Request inventory verification / Request inventory verification

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2010-30I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
DSPIC30F2010-30I/SO
Quantity:
5 000
Part Number:
DSPIC30F2010-30I/SOG
Manufacturer:
TOS
Quantity:
453
2.0
2.1
The core has a 24-bit instruction word. The Program
Counter (PC) is 23 bits wide with the Least Significant
bit (LSb) always clear (see Section 3.1 “Program
Address Space”), and the Most Significant bit (MSb)
is ignored during normal program execution, except for
certain specialized instructions. Thus, the PC can
address up to 4M instruction words of user program
space. An instruction prefetch mechanism is used to
help maintain throughput. Program loop constructs,
free from loop count management overhead, are
supported using the DO and REPEAT instructions, both
of which are interruptible at any point.
The working register array consists of 16x16-bit
registers, each of which can act as data, address or
offset registers. One working register (W15) operates
as a software Stack Pointer for interrupts and calls.
The data space is 64 Kbytes (32K words) and is split
into two blocks, referred to as X and Y data memory.
Each block has its own independent Address
Generation Unit (AGU). Most instructions operate
solely through the X memory AGU, which provides the
appearance of a single unified data space. The
Multiply-Accumulate (MAC) class of dual source DSP
instructions operate through both the X and Y AGUs,
splitting the data address space into two parts (see
Section 3.2 “Data Address Space”). The X and Y
data space boundary is device specific and cannot be
altered by the user. Each data word consists of 2 bytes,
and most instructions can address data either as words
or bytes.
There are two methods of accessing data stored in
program memory:
• The upper 32 Kbytes of data space memory can be
© 2008 Microchip Technology Inc.
Note:
mapped into the lower half (user space) of program
space at any 16K program word boundary, defined
by the 8-bit Program Space Visibility Page
(PSVPAG) register. This lets any instruction access
program space as if it were data space, with a
limitation that the access requires an additional
cycle. Moreover, only the lower 16 bits of each
instruction word can be accessed using this
method.
CPU ARCHITECTURE
OVERVIEW
Core Overview
This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “dsPIC30F/33F Programmer’s
Reference Manual” (DS70157).
• Linear indirect access of 32K word pages within
Overhead-free circular buffers (Modulo Addressing)
are supported in both X and Y address spaces. This is
primarily intended to remove the loop overhead for
DSP algorithms.
The X AGU also supports Bit-Reversed Addressing on
destination effective addresses, to greatly simplify input
or output data reordering for radix-2 FFT algorithms.
Refer to Section 4.0 “Address Generator Units” for
details on Modulo and Bit-Reversed Addressing.
The core supports Inherent (no operand), Relative,
Literal, Memory Direct, Register Direct, Register
Indirect, Register Offset and Literal Offset Addressing
modes. Instructions are associated with predefined
Addressing modes, depending upon their functional
requirements.
For most instructions, the core is capable of executing
a data (or program data) memory read, a working
register (data) read, a data memory write and a
program (instruction) memory read per instruction
cycle. As a result, 3-operand instructions are
supported, allowing C = A + B operations to be
executed in a single cycle.
A DSP engine has been included to significantly enhance
the core arithmetic capability and throughput. It features
a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two
40-bit saturating accumulators and a 40-bit bidirectional
barrel shifter. Data in the accumulator or any working reg-
ister can be shifted up to 15 bits right or 16 bits left in a
single cycle. The DSP instructions operate seamlessly
with all other instructions and have been designed for
optimal real-time performance. The MAC class of
instructions can concurrently fetch two data operands
from memory, while multiplying two W registers. To
enable this concurrent fetching of data operands, the
data space has been split for these instructions and linear
for all others. This has been achieved in a transparent
and flexible manner, by dedicating certain working
registers to each address space for the MAC class of
instructions.
The core does not support a multi-stage instruction
pipeline. However, a single stage instruction prefetch
mechanism is used, which accesses and partially
decodes instructions a cycle ahead of execution, in order
to maximize available execution time. Most instructions
execute in a single cycle, with certain exceptions.
The core features a vectored exception processing struc-
ture for traps and interrupts, with 62 independent vectors.
The exceptions consist of up to 8 traps (of which 4 are
reserved) and 54 interrupts. Each interrupt is prioritized
based on a user-assigned priority between 1 and 7
(1 being the lowest priority and 7 being the highest) in
conjunction with a predetermined ‘natural order’. Traps
have fixed priorities, ranging from 8 to 15.
program space is also possible using any working
register, via table read and write instructions.
Table read and write instructions can be used to
access all 24 bits of an instruction word.
dsPIC30F2010
DS70118H-page 11

Related parts for DSPIC30F2010-30I/SO