ATMEGA162L-8MI Atmel, ATMEGA162L-8MI Datasheet - Page 92

IC MCU AVR 16K 3V 8MHZ 44-QFN

ATMEGA162L-8MI

Manufacturer Part Number
ATMEGA162L-8MI
Description
IC MCU AVR 16K 3V 8MHZ 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA162L-8MI

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-VQFN Exposed Pad
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Data Converters
-
Compare Output Mode and
Waveform Generation
Modes of Operation
Normal Mode
Clear Timer on Compare
Match (CTC) Mode
92
ATmega162(V/U/L)
The design of the output compare pin logic allows initialization of the OC0 state before
the output is enabled. Note that some COM01:0 bit settings are reserved for certain
modes of operation. See “8-bit Timer/Counter Register Description” on page 98.
The Waveform Generator uses the COM01:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COM01:0 = 0 tells the Waveform Generator that no
action on the OC0 Register is to be performed on the next compare match. For Com-
pare Output actions in the non-PWM modes refer to Table 48 on page 99. For fast PWM
mode, refer to Table 49 on page 99, and for phase correct PWM refer to Table 50 on
page 99.
A change of the COM01:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC0 strobe bits.
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM01:0) and
Compare Output mode (COM01:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM01:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM01:0 bits control whether the output
should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 91.).
For detailed timing information refer to Figure 40, Figure 41, Figure 42 and Figure 43 in
“Timer/Counter Timing Diagrams” on page 96.
The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag
(TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The
TOV0 flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV0
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.
The output compare unit can be used to generate interrupts at some given time. Using
the output compare to generate waveforms in Normal mode is not recommended, since
this will occupy too much of the CPU time.
In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0 Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the
counter value (TCNT0) matches the OCR0. The OCR0 defines the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.
The timing diagram for the CTC mode is shown in Figure 37. The counter value
(TCNT0) increases until a compare match occurs between TCNT0 and OCR0, and then
counter (TCNT0) is cleared.
2513C–AVR–09/02

Related parts for ATMEGA162L-8MI