AT90USB646-AUR Atmel, AT90USB646-AUR Datasheet - Page 385

no-image

AT90USB646-AUR

Manufacturer Part Number
AT90USB646-AUR
Description
MCU AVR 64K FLASH 16MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® 90USBr
Datasheet

Specifications of AT90USB646-AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART, USB, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
48
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, UART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
48
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB646-AUR
Manufacturer:
Atmel
Quantity:
10 000
Table 29-16. Serial Programming Instruction Set (Continued)
Note:
29.8.2
29.9
29.9.1
7593K–AVR–11/09
Instruction
Read Extended Fuse Bits
Read Calibration Byte
Poll RDY/BSY
a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in,
x = don’t care
Programming via the JTAG Interface
Serial Programming Characteristics
Programming Specific JTAG Instructions
For characteristics of the Serial Programming module see “SPI Timing Characteristics” on page
403.
Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.
To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.
During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input
into a sufficiently low frequency.
As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.
The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.
The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.
The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in
0101 0000
0011 1000
1111 0000
Byte 1
0000 1000
000x xxxx
0000 0000
Byte 2
Instruction Format
Figure
xxxx xxxx
0000 0000
xxxx xxxx
Byte 3
29-12.
oooo oooo
oooo oooo
xxxx xxxo
Byte4
Operation
Read Extended Fuse bits. “0” = pro-
grammed, “1” = unprogrammed. See
Table 29-3 on page 367
Read Calibration Byte
If o = “1”, a programming operation is
still busy. Wait until this bit returns to
“0” before applying another command.
AT90USB64/128
for details.
385

Related parts for AT90USB646-AUR