PIC16F1947-I/PT Microchip Technology, PIC16F1947-I/PT Datasheet - Page 89

no-image

PIC16F1947-I/PT

Manufacturer Part Number
PIC16F1947-I/PT
Description
IC MCU 8BIT FLASH 64TQFP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr

Specifications of PIC16F1947-I/PT

Core Size
8-Bit
Program Memory Size
28KB (16K x 14)
Core Processor
PIC
Speed
32MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 17x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TFQFP
Controller Family/series
PIC16F
Eeprom Memory Size
256Byte
Ram Memory Size
1024Byte
Cpu Speed
32MHz
No. Of Timers
5
Interface
EUSART, I2C, SPI
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
EUSART, I2C, SPI
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
54
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 17 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F1947-I/PT
Manufacturer:
XILINX
Quantity:
86
Part Number:
PIC16F1947-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F1947-I/PT
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
PIC16F1947-I/PT
0
Company:
Part Number:
PIC16F1947-I/PT
Quantity:
6 400
Company:
Part Number:
PIC16F1947-I/PT
Quantity:
1 600
Company:
Part Number:
PIC16F1947-I/PT
Quantity:
1 600
7.1
Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:
• GIE bit of the INTCON register
• Interrupt Enable bit(s) for the specific interrupt
• PEIE bit of the INTCON register (if the Interrupt
The INTCON, PIR1, PIR2, PIR3 and PIR4 registers
record individual interrupts via interrupt flag bits. Inter-
rupt flag bits will be set, regardless of the status of the
GIE, PEIE and individual interrupt enable bits.
The following events happen when an interrupt event
occurs while the GIE bit is set:
• Current prefetched instruction is flushed
• GIE bit is cleared
• Current Program Counter (PC) is pushed onto the
• Critical registers are automatically saved to the
• PC is loaded with the interrupt vector 0004h
The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.
The RETFIE instruction exits the ISR by popping the
previous address from the stack, restoring the saved
context from the shadow registers and setting the GIE
bit.
For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.
 2010 Microchip Technology Inc.
event(s)
Enable bit of the interrupt event is contained in the
PIE1, PIE2, PIE3 and PIE4 registers)
stack
shadow registers (See
Context
Note 1: Individual interrupt flag bits are set,
2: All interrupts will be ignored while the GIE
Operation
Saving”.”)
regardless of the state of any other
enable bits.
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
“Section 7.5 “Automatic
Preliminary
7.2
Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is 3 or 4 instruction cycles. For asynchronous
interrupts, the latency is 3 to 5 instruction cycles,
depending on when the interrupt occurs. See
and
Figure 7-4
PIC16F/LF1946/47
Interrupt Latency
for more details.
DS41414B-page 89
Figure 7-3

Related parts for PIC16F1947-I/PT