ATMEGA16U2-MU Atmel, ATMEGA16U2-MU Datasheet - Page 180

no-image

ATMEGA16U2-MU

Manufacturer Part Number
ATMEGA16U2-MU
Description
MCU AVR 16K FLASH USB 32-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16U2-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Core
AVR8
Processor Series
ATMEGA16x
Data Bus Width
8 bit
Maximum Clock Frequency
16 MHz
Data Ram Size
1.25 KB
Data Rom Size
512 B
Number Of Programmable I/os
22
Number Of Timers
2
Mounting Style
SMD/SMT
Height
0.95 mm
Interface Type
SPI, UART
Length
5 mm
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
5 mm
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATMEGA16U2-MU
Quantity:
250
7799D–AVR–11/10
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit buf-
fer to the shift register when the shift register is ready to send a new frame.
Note:
The following code examples show a simple USART in MSPIM mode transfer function based on
polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The
USART has to be initialized before the function can be used. For the assembly code, the data to
be sent is assumed to be stored in Register R16 and the data received will be available in the
same register (R16) after the function returns.
The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value..
Note:
Assembly Code Example
C Code Example
USART_MSPIM_Transfer:
USART_MSPIM_Wait_RXCn:
unsigned char USART_Receive( void )
{
}
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_MSPIM_Transfer
; Put data (r16) into buffer, sends the data
out UDRn,r16
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_MSPIM_Wait_RXCn
; Get and return received data from buffer
in r16, UDRn
ret
/* Wait for empty transmit buffer */
while ( !( UCSRnA & (1<<UDREn)) );
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while ( !(UCSRnA & (1<<RXCn)) );
/* Get and return received data from buffer */
return UDRn;
To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, i.e. if an overflow occurs the character last received will be lost, not the first data in the buf-
fer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn
is not read before all transfers are completed, then byte 3 to be received will be lost, and not byte
1.
1. See “Code Examples” on page 6.
(1)
(1)
ATmega8U2/16U2/32U2
180

Related parts for ATMEGA16U2-MU