PIC16F886-E/SP Microchip Technology, PIC16F886-E/SP Datasheet - Page 192

IC PIC MCU FLASH 8KX14 28DIP

PIC16F886-E/SP

Manufacturer Part Number
PIC16F886-E/SP
Description
IC PIC MCU FLASH 8KX14 28DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F886-E/SP

Program Memory Type
FLASH
Program Memory Size
14KB (8K x 14)
Package / Case
28-DIP (0.300", 7.62mm)
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
256 x 8
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
368 B
Interface Type
MSSP/EUSART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
24
Number Of Timers
3
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM164123, DM164120-3, DV164122
Minimum Operating Temperature
- 40 C
On-chip Adc
11-ch x 10-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM164123 - KIT MANAGEMENT SYSTEM PICDEMDVA18XP280 - DEVICE ADAPTER 18F2220 PDIP 28LD
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F886-E/SP
Manufacturer:
Microchip Technology
Quantity:
135
PIC16F882/883/884/886/887
13.4.4.1
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I
not be released.
In Master Transmitter mode, serial data is output
through SDA, while SCL outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic ‘0’. Serial data is
transmitted eight bits at a time. After each byte is trans-
mitted, an Acknowledge bit is received. Start and Stop
conditions are output to indicate the beginning and the
end of a serial transfer.
In Master Receive mode, the first byte transmitted con-
tains the slave address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave
address followed by a ‘1’ to indicate receive bit. Serial
data is received via SDA, while SCL outputs the serial
clock. Serial data is received eight bits at a time. After
each byte is received, an Acknowledge bit is transmit-
ted. Start and Stop conditions indicate the beginning
and end of transmission.
The Baud Rate Generator used for the SPI mode oper-
ation is now used to set the SCL clock frequency for
either 100 kHz, 400 kHz, or 1 MHz I
Baud Rate Generator reload value is contained in the
lower 7 bits of the SSPADD register. The Baud Rate
Generator will automatically begin counting on a write
to the SSPBUF. Once the given operation is complete
(i.e., transmission of the last data bit is followed by
ACK), the internal clock will automatically stop counting
and the SCL pin will remain in its last state.
DS41291D-page 190
I
2
C™ Master Mode Operation
2
C operation. The
2
C bus will
Preliminary
A typical transmit sequence would go as follows:
a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
k)
l)
The user generates a Start condition by setting
the Start Enable (SEN) bit (SSPCON2 register).
SSPIF is set. The MSSP module will wait the
required start time before any other operation
takes place.
The user loads the SSPBUF with the address to
transmit.
Address is shifted out the SDA pin until all eight
bits are transmitted.
The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit (SSPCON2 register).
The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.
The user loads the SSPBUF with eight bits of
data.
Data is shifted out the SDA pin until all eight bits
are transmitted.
The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit (SSPCON2 register).
The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.
The user generates a Stop condition by setting
the Stop Enable bit PEN (SSPCON2 register).
Interrupt is generated once the Stop condition is
complete.
© 2007 Microchip Technology Inc.

Related parts for PIC16F886-E/SP