MC9S12C128CFUE Freescale Semiconductor, MC9S12C128CFUE Datasheet - Page 185

IC MCU 128K FLASH 25MHZ 80-QFP

MC9S12C128CFUE

Manufacturer Part Number
MC9S12C128CFUE
Description
IC MCU 128K FLASH 25MHZ 80-QFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheets

Specifications of MC9S12C128CFUE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
60
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-QFP
Cpu Family
HCS12
Device Core Size
16b
Frequency (max)
25MHz
Interface Type
CAN/SCI/SPI
Total Internal Ram Size
4KB
# I/os (max)
60
Number Of Timers - General Purpose
8
Operating Supply Voltage (typ)
2.5/5V
Operating Supply Voltage (max)
2.75/5.5V
Operating Supply Voltage (min)
2.35/2.97V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
80
Package Type
PQFP
Processor Series
S12C
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
4000 B
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
61
Number Of Timers
1
Operating Supply Voltage
- 0.3 V to + 6.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
M68EVB912C32EE
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12C128CFUE
Manufacturer:
ST
Quantity:
6 246
Part Number:
MC9S12C128CFUE
Manufacturer:
FREESCALE
Quantity:
4 330
Part Number:
MC9S12C128CFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12C128CFUE
Manufacturer:
FREESCALE
Quantity:
4 330
Part Number:
MC9S12C128CFUE
Manufacturer:
NXP
Quantity:
100
Part Number:
MC9S12C128CFUE
Manufacturer:
FREESCALE
Quantity:
1 000
Figure 6-13
occur if a POD device is connected to the target BKGD pin and the target is already in debug active mode.
Consider that the target CPU is executing a pending BDM command at the exact moment the POD is being
connected to the BKGD pin. In this case, an ACK pulse is issued along with the SYNC command. In this
case, there is an electrical conflict between the ACK speedup pulse and the SYNC pulse. Because this is
not a probable situation, the protocol does not prevent this conflict from happening.
The hardware handshake protocol is enabled by the ACK_ENABLE and disabled by the ACK_DISABLE
BDM commands. This provides backwards compatibility with the existing POD devices which are not
able to execute the hardware handshake protocol. It also allows for new POD devices, that support the
hardware handshake protocol, to freely communicate with the target device. If desired, without the need
for waiting for the ACK pulse.
Freescale Semiconductor
(TARGET MCU)
BKGD PIN
DRIVES SYNC
TARGET MCU
TO BKGD PIN
BDM CLOCK
DRIVES TO
BKGD PIN
BKGD PIN
HOST
shows a conflict between the ACK pulse and the SYNC request pulse. This conflict could
This information is being provided so that the MCU integrator will be aware
that such a conflict could eventually occur.
READ_BYTE
HOST
AND STARTS TO EXECUTES
Figure 6-12. ACK Abort Procedure at the Command Level
READ_BYTE CMD IS ABORTED
Figure 6-13. ACK Pulse and SYNC Request Conflict
THE READ_BYTE CMD
MEMORY ADDRESS
TARGET
BY THE SYNC REQUEST
HOST SYNC REQUEST PULSE
BDM DECODE
ACK PULSE
16 CYCLES
(OUT OF SCALE)
MC9S12C-Family / MC9S12GC-Family
HOST AND
TARGET DRIVE
TO BKGD PIN
AT LEAST 128 CYCLES
Rev 01.24
NOTE
Chapter 6 Background Debug Module (BDMV4) Block Description
ELECTRICAL CONFLICT
HIGH-IMPEDANCE
HOST
SYNC RESPONSE
FROM THE TARGET
(OUT OF SCALE)
READ_STATUS
TARGET
NEW BDM COMMAND
NEW BDM COMMAND
HOST
SPEEDUP PULSE
TARGET
185

Related parts for MC9S12C128CFUE