ATMEGA128L-8AU Atmel, ATMEGA128L-8AU Datasheet - Page 31

IC AVR MCU 128K 8MHZ 3V 64TQFP

ATMEGA128L-8AU

Manufacturer Part Number
ATMEGA128L-8AU
Description
IC AVR MCU 128K 8MHZ 3V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128L-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
8MHz
Interface Type
2-Wire/JTAG/USART
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
8 MIPS
Eeprom Memory
4K Bytes
Input Output
53
Interface
2-Wire/JTAG/SPI/USART
Memory Type
Flash
Number Of Bits
8
Programmable Memory
128K Bytes
Timers
2-8-bit, 2-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128L-8AU
Manufacturer:
MURATA
Quantity:
120 000
Part Number:
ATMEGA128L-8AU
Manufacturer:
ATM
Quantity:
450
Part Number:
ATMEGA128L-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128L-8AU
Quantity:
7
Company:
Part Number:
ATMEGA128L-8AU
Quantity:
12 399
Company:
Part Number:
ATMEGA128L-8AU
Quantity:
74
Part Number:
ATMEGA128L-8AUR
Manufacturer:
Atmel
Quantity:
10 000
External Memory Control
Register B – XMCRB
Using all Locations of
External Memory Smaller than
64 KB
2467M–AVR–11/04
• Bit 7– XMBK: External Memory Bus-keeper Enable
Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper
is enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would
otherwise be tri-stated. Writing XMBK to zero disables the bus keeper. XMBK is not
qualified with SRE, so even if the XMEM interface is disabled, the bus keepers are still
activated as long as XMBK is one.
• Bit 6..4 – Res: Reserved Bits
These are reserved bits and will always read as zero. When writing to this address loca-
tion, write these bits to zero for compatibility with future devices.
• Bit 2..0 – XMM2, XMM1, XMM0: External Memory High Mask
When the External Memory is enabled, all Port C pins are default used for the high
address byte. If the full 60KB address space is not required to access the External Mem-
ory, some, or all, Port C pins can be released for normal Port Pin function as described
in Table 5. As described in “Using all 64KB Locations of External Memory” on page 33,
it is possible to use the XMMn bits to access all 64KB locations of the External Memory.
Table 5. Port C Pins Released as Normal Port Pins when the External Memory is
Enabled
Since the external memory is mapped after the internal memory as shown in Figure 11,
the external memory is not addressed when addressing the first 4,352 bytes of data
space. It may appear that the first 4,352 bytes of the external memory are inaccessible
(external memory addresses 0x0000 to 0x10FF). However, when connecting an exter-
nal memory smaller than 64 KB, for example 32 KB, these locations are easily accessed
simply by addressing from address 0x8000 to 0x90FF. Since the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to 0x90FF
will appear as addresses 0x0000 to 0x10FF for the external memory. Addressing above
address 0x90FF is not recommended, since this will address an external memory loca-
tion that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x1100
to 0x90FF. This is illustrated in Figure 17. Memory configuration B refers to the
ATmega103 compatibility mode, configuration A to the non-compatible mode.
Bit
Read/Write
Initial Value
XMM2
0
0
0
0
1
1
1
1
XMM1
0
0
1
1
0
0
1
1
XMBK
R/W
7
0
XMM0
0
1
0
1
0
1
0
1
R
6
0
# Bits for External Memory Address
8 (Full 60 KB space)
7
6
5
4
3
2
No Address high bits
R
5
0
R
4
0
R
3
0
XMM2
R/W
2
0
XMM1
R/W
ATmega128
1
0
Released Port Pins
None
PC7
PC7 - PC6
PC7 - PC5
PC7 - PC4
PC7 - PC3
PC7 - PC2
Full Port C
XMM0
R/W
0
0
XMCRB
31

Related parts for ATMEGA128L-8AU