ATMEGA128L-8AU Atmel, ATMEGA128L-8AU Datasheet - Page 149

IC AVR MCU 128K 8MHZ 3V 64TQFP

ATMEGA128L-8AU

Manufacturer Part Number
ATMEGA128L-8AU
Description
IC AVR MCU 128K 8MHZ 3V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128L-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
8MHz
Interface Type
2-Wire/JTAG/USART
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
8 MIPS
Eeprom Memory
4K Bytes
Input Output
53
Interface
2-Wire/JTAG/SPI/USART
Memory Type
Flash
Number Of Bits
8
Programmable Memory
128K Bytes
Timers
2-8-bit, 2-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
4096Byte
Ram Memory Size
4KB
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128L-8AU
Manufacturer:
MURATA
Quantity:
120 000
Part Number:
ATMEGA128L-8AU
Manufacturer:
ATM
Quantity:
450
Part Number:
ATMEGA128L-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128L-8AU
Quantity:
7
Company:
Part Number:
ATMEGA128L-8AU
Quantity:
12 399
Company:
Part Number:
ATMEGA128L-8AU
Quantity:
74
Part Number:
ATMEGA128L-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Modes of Operation
Normal Mode
Clear Timer on Compare
Match (CTC) Mode
2467M–AVR–11/04
A change of the COM21:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC2 strobe bits.
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM21:0) and
Compare Output mode (COM21:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM21:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM21:0 bits control whether the output
should be set, cleared, or toggled at a compare match (see “Compare Match Output
Unit” on page 148).
For detailed timing information refer to Figure 68, Figure 69, Figure 70, and Figure 71 in
“Timer/Counter Timing Diagrams” on page 154.
The simplest mode of operation is the normal mode (WGM21:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag
(
flag in this case behaves like a ninth bit, except that it is only set, not cleared. However,
combined with the timer overflow interrupt that automatically clears the
timer resolution can be increased by software. There are no special cases to consider in
the normal mode, a new counter value can be written anytime.
The output compare unit can be used to generate interrupts at some given time. Using
the output compare to generate waveforms in normal mode is not recommended, since
this will occupy too much of the CPU time.
In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the
counter value (TCNT2) matches the OCR2. The OCR2 defines the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.
The timing diagram for the CTC mode is shown in Figure 65. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2 and then
counter (TCNT2) is cleared.
Figure 65. CTC Mode, Timing Diagram
TOV
TCNTn
OCn
(Toggle)
Period
2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The
1
2
3
4
ATmega128
OCn Interrupt Flag Set
(COMn1:0 = 1)
TOV
2 flag, the
TOV
149
2

Related parts for ATMEGA128L-8AU