ATMEGA1281V-8MU Atmel, ATMEGA1281V-8MU Datasheet - Page 321

IC MCU AVR 128K FLASH 64-QFN

ATMEGA1281V-8MU

Manufacturer Part Number
ATMEGA1281V-8MU
Description
IC MCU AVR 128K FLASH 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA1281V-8MU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
6
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFPATAVRDB101 - MODULE DISPLAY LCD/RGB BACKLIGHT770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
28.4.1
2549M–AVR–09/10
Entering the Boot Loader Program
Table 28-2.
Note:
Table 28-3.
Note:
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.
Table 28-4.
Note:
BLB0 Mode
BLB1 Mode
BOOTRST
1
2
3
4
1
2
3
4
1
0
“1” means unprogrammed, “0” means programmed.
“1” means unprogrammed, “0” means programmed.
“1” means unprogrammed, “0” means programmed.
Boot Lock Bit0 Protection Modes (Application Section)
Boot Lock Bit1 Protection Modes (Boot Loader Section)
Boot Reset Fuse
Reset Address
Reset Vector = Application Reset (address 0x0000)
Reset Vector = Boot Loader Reset (see
BLB02
BLB12
1
1
0
0
1
1
0
0
BLB01
BLB11
1
0
0
1
1
0
0
1
(Note:)
ATmega640/1280/1281/2560/2561
Protection
No restrictions for SPM or (E)LPM accessing the Application
section.
SPM is not allowed to write to the Application section.
SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.
(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.
Protection
No restrictions for SPM or (E)LPM accessing the Boot Loader
section.
SPM is not allowed to write to the Boot Loader section.
SPM is not allowed to write to the Boot Loader section, and
(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.
(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.
Table 28-7 on page
(Note:)
(Note:)
328)
321

Related parts for ATMEGA1281V-8MU