PIC18F2510-I/SP Microchip Technology, PIC18F2510-I/SP Datasheet - Page 216

IC MCU FLASH 16KX16 28-DIP

PIC18F2510-I/SP

Manufacturer Part Number
PIC18F2510-I/SP
Description
IC MCU FLASH 16KX16 28-DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2510-I/SP

Core Size
8-Bit
Program Memory Size
32KB (16K x 16)
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Number Of I /o
25
Program Memory Type
FLASH
Ram Size
1.5K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.300", 7.62mm)
Controller Family/series
PIC18
No. Of I/o's
25
Ram Memory Size
1.5KB
Cpu Speed
40MHz
No. Of Timers
4
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA18XP280 - DEVICE ADAPTER 18F2220 PDIP 28LD
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2510-I/SP
Manufacturer:
TM
Quantity:
50 000
PIC18F2X1X/4X1X
18.1
For the A/D converter to meet its specified accuracy,
the charge holding capacitor (C
to fully charge to the input channel voltage level. The
analog input model is shown in Figure 18-3. The
source impedance (R
switch (R
required to charge the capacitor C
switch (R
(V
at the analog input (due to pin leakage current). The
maximum recommended impedance for analog
sources is 2.5 kΩ. After the analog input channel is
selected (changed), the channel must be sampled for
at least the minimum acquisition time before starting a
conversion.
EQUATION 18-1:
EQUATION 18-2:
EQUATION 18-3:
DS39636D-page 218
T
V
or
T
T
T
T
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, T
T
T
ACQ
DD
Note:
C
ACQ
AMP
COFF
C
ACQ
HOLD
). The source impedance affects the offset voltage
=
=
A/D Acquisition Requirements
SS
=
=
=
=
=
SS
=
=
) impedance varies over the device voltage
When the conversion is started, the
holding capacitor is disconnected from the
input pin.
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
T
) impedance directly affect the time
AMP
T
0.2 μs
(Temp – 25°C)(0.02 μs/°C)
(85°C – 25°C)(0.02 μs/°C)
1.2 μs
-(C
-(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883)
1.05 μs
0.2 μs + 1 μs + 1.2 μs
2.4 μs
(V
-(C
AMP
HOLD
+ T
REF
HOLD
+ T
C
– (V
ACQUISITION TIME
A/D MINIMUM CHARGING TIME
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME
S
+ T
)(R
C
) and the internal sampling
)(R
+ T
REF
COFF
IC
IC
+ R
COFF
/2048)) • (1 – e
+ R
HOLD
SS
SS
HOLD
+ R
+ R
) must be allowed
S
S
) ln(1/2047)
. The sampling
) ln(1/2048)
(-T
C
/C
HOLD
(R
IC
+ R
SS
+ R
S
To
Equation 18-1 may be used. This equation assumes
that 1/2 LSb error is used (1024 steps for the A/D). The
1/2 LSb error is the maximum error allowed for the A/D
to meet its specified resolution.
Example 18-3 shows the calculation of the minimum
required acquisition time T
based
assumptions:
C
Rs
Conversion Error
V
Temperature
))
HOLD
DD
)
calculate
on
COFF
the
= 0 ms.
the
=
=
=
=
following
minimum
© 2009 Microchip Technology Inc.
25 pF
2.5 kΩ
1/2 LSb
5V → Rss = 2 kΩ
85°C (system max.)
ACQ
. This calculation is
application
acquisition
system
time,

Related parts for PIC18F2510-I/SP