L6566B STMicroelectronics, L6566B Datasheet - Page 19

IC CTRLR OVP OTP UVLO HV 16SOIC

L6566B

Manufacturer Part Number
L6566B
Description
IC CTRLR OVP OTP UVLO HV 16SOIC
Manufacturer
STMicroelectronics
Datasheet

Specifications of L6566B

Output Isolation
Isolated
Frequency Range
10 ~ 300kHz
Voltage - Input
8 ~ 23 V
Power (watts)
750mW
Operating Temperature
-40°C ~ 150°C
Package / Case
16-SOIC (0.154", 3.90mm Width)
Output Current
800 mA
Output Power
750 mW
Input Voltage
8 V to 23 V
Operating Temperature Range
- 40 C to + 150 C
Mounting Style
SMD/SMT
Duty Cycle (max)
75 %
Selectable Multi-mode Operation
fixed frequency or quasi-resonant
For Use With
497-6452 - BOARD EVAL FOR L6566B497-6451 - BOARD EVAL FOR L6566B497-6450 - BOARD EVAL FOR L6566B497-6449 - BOARD EVAL FOR L6566A
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
L6566B
Manufacturer:
ST
Quantity:
20 000
Part Number:
L6566B
Quantity:
400
Part Number:
L6566BH
Manufacturer:
ST
0
Part Number:
L6566BHTR
Manufacturer:
ST
0
Part Number:
L6566BHTR
Manufacturer:
ST
Quantity:
20 000
Part Number:
L6566BHTR
0
Part Number:
L6566BTR
Manufacturer:
ST
0
Part Number:
L6566BTR
0
Company:
Part Number:
L6566BTR
Quantity:
9 000
Company:
Part Number:
L6566BTR
Quantity:
9 000
Part Number:
L6566BTR-13
Manufacturer:
ST
Quantity:
20 000
Part Number:
L6566BTR@@@@@@@@
Manufacturer:
ST
0
L6566B
With reference to the timing diagram of
the voltage on the bulk capacitor (Vin) builds up and, at about 80 V, the HV generator is
enabled to operate (HV_EN is pulled high) so that it draws about 1 mA. This current, minus
the device’s consumption, charges the bypass capacitor connected from pin Vcc (5) to
ground and makes its voltage rise almost linearly.
Figure 6.
As the Vcc voltage reaches the turn-on threshold (14 V typ.) the device starts operating and
the HV generator is cut off by the Vcc_OK signal asserted high. The device is powered by
the energy stored in the Vcc capacitor until the self-supply circuit (typically an auxiliary
winding of the transformer and a steering diode) develops a voltage high enough to sustain
the operation. The residual consumption of this circuit is just the one on the 15 MΩ resistor
(≈10 mW at 400 Vdc), typically 50-70 times lower, under the same conditions, as compared
to a standard start-up circuit made with external dropping resistors.
At converter power-down the system will lose regulation as soon as the input voltage is so
low that either peak current or maximum duty cycle limitation is tripped. Vcc will then drop
and stop IC activity as it falls below the UVLO threshold (10 V typ.). The Vcc_OK signal is
de-asserted as the Vcc voltage goes below a threshold VCC
generator can now restart. However, if Vin < Vin
asserted too and the HV generator is disabled. This prevents converter’s restart attempts
and ensures monotonic output voltage decay at power-down in systems where brownout
protection (see the relevant section) is not used.
The low restart threshold VCC
the device will have a very low repetition rate, as shown in the timing diagram of
page 20
Vcc_OK
(pin 5)
(pin 4)
HV_EN
Vcc
0.85 mA
V
I
Vcc
Vcc
GD
charge
HVstart
Vcc
restart
Vin
OFF
ON
, and that the converter will work safely with extremely low power throughput.
Timing diagram: normal power-up and power-down sequences
Power-on
rest
ensures that, during short circuits, the restart attempts of
Figure 6
, when power is first applied to the converter
start
operation
Normal
, as illustrated in
rest
located at about 5V. The HV
Application information
Figure 6
Power-off
regulation is lost here
, HV_EN is de-
Figure 7 on
19/51
t
t
t
t
t
t

Related parts for L6566B