COP8SBR9 NSC [National Semiconductor], COP8SBR9 Datasheet - Page 19

no-image

COP8SBR9

Manufacturer Part Number
COP8SBR9
Description
8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM and Brownout
Manufacturer
NSC [National Semiconductor]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
COP8SBR9HVA8
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
COP8SBR9HVA8
Manufacturer:
HARRIS
Quantity:
20 000
Part Number:
COP8SBR9HVA8/NOPB
Manufacturer:
National
Quantity:
225
Part Number:
COP8SBR9HVA8/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
COP8SBR9LVA8
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
COP8SBR9LVA8/NOPB
Manufacturer:
National
Quantity:
62
Part Number:
COP8SBR9LVA8/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
9.0 Pin Descriptions
10.0 Functional Description
The architecture of the device is a modified Harvard archi-
tecture. With the Harvard architecture, the program memory
(Flash) is separate from the data store memory (RAM). Both
Program Memory and Data Memory have their own separate
addressing space with separate address buses. The archi-
tecture, though based on the Harvard architecture, permits
transfer of data from Flash Memory to RAM.
10.1 CPU REGISTERS
The CPU can do an 8-bit addition, subtraction, logical or shift
operation in one instruction (t
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15-bit Program Counter Register
B is an 8-bit RAM address pointer, which can be optionally
post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be
optionally post auto incremented or decremented.
S is the 8-bit Data Segment Address Register used to extend
the lower half of the address range (00 to 7F) into 256 data
segments of 128 bytes each.
SP is the 8-bit stack pointer, which points to the subroutine/
interrupt stack (in RAM). With reset the SP is initialized to
RAM address 06F Hex. The SP is decremented as items are
pushed onto the stack. SP points to the next available loca-
tion on the stack.
All the CPU registers are memory mapped with the excep-
tion of the Accumulator (A) and the Program Counter (PC).
10.2 PROGRAM MEMORY
The program memory consists of 32,768 bytes of Flash
Memory. These bytes may hold program instructions or con-
stant data (data tables for the LAID instruction, jump vectors
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
FIGURE 6. Emulation Connection
C
) cycle time.
(Continued)
10138909
19
for the JID instruction, and interrupt vectors for the VIS
instruction). The program memory is addressed by the 15-bit
program counter (PC). All interrupts in the device vector to
program memory location 00FF Hex. The program memory
reads 00 Hex in the erased state. Program execution starts
at location 0 after RESET.
If a Return instruction is executed when the SP contains 6F
(hex), instruction execution will continue from Program
Memory location 7FFF (hex). If location 7FFF is accessed by
an instruction fetch, the Flash Memory will return a value of
00. This is the opcode for the INTR instruction and will cause
a Software Trap.
For the purpose of erasing and rewriting the Flash Memory,
it is organized in pages of 128 bytes.
10.3 DATA MEMORY
The data memory address space includes the on-chip RAM
and data registers, the I/O registers (Configuration, Data and
Pin), the control registers, the MICROWIRE/PLUS SIO shift
register, and the various registers, and counters associated
with the timers and the USART (with the exception of the
IDLE timer). Data memory is addressed directly by the in-
struction or indirectly by the B, X and SP pointers.
The data memory consists of 1024 bytes of RAM. Sixteen
bytes of RAM are mapped as “registers” at addresses 0F0 to
0FF Hex. These registers can be loaded immediately, and
also decremented and tested with the DRSZ (decrement
register and skip if zero) instruction. The memory pointer
registers X, SP, B and S are memory mapped into this space
at address locations 0FC to 0FF Hex respectively, with the
other registers being available for general usage.
The instruction set permits any bit in memory to be set, reset
or tested. All I/O and registers (except A and PC) are
memory mapped; therefore, I/O bits and register bits can be
directly and individually set, reset and tested. The accumu-
lator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.
10.4 DATA MEMORY SEGMENT RAM EXTENSION
Data memory address 0FF is used as a memory mapped
location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a
single byte address within the instruction, or indirectly rela-
tive to the reference of the B, X, or SP pointers (each
contains a single-byte address). This single-byte address
allows an addressing range of 256 locations from 00 to FF
hex. The upper bit of this single-byte address divides the
data store memory into two separate sections as outlined
previously. With the exception of the RAM register memory
from address locations 00F0 to 00FF, all RAM memory is
memory mapped with the upper bit of the single-byte ad-
dress being equal to zero. This allows the upper bit of the
single-byte address to determine whether or not the base
address range (from 0000 to 00FF) is extended. If this upper
bit equals one (representing address range 0080 to 00FF),
then address extension does not take place. Alternatively, if
this upper bit equals zero, then the data segment extension
register S is used to extend the base address range (from
0000 to 007F) from XX00 to XX7F, where XX represents the
8 bits from the S register. Thus the 128-byte data segment
extensions are located from addresses 0100 to 017F for
data segment 1, 0200 to 027F for data segment 2, etc., up to
FF00 to FF7F for data segment 255. The base address
range from 0000 to 007F represents data segment 0.
www.national.com

Related parts for COP8SBR9