DSPIC30F6012 MICROCHIP [Microchip Technology], DSPIC30F6012 Datasheet - Page 139

no-image

DSPIC30F6012

Manufacturer Part Number
DSPIC30F6012
Description
High-Performance, 16-Bit Digital Signal Controllers
Manufacturer
MICROCHIP [Microchip Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6012-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012-20I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012-20I/PF
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
DSPIC30F6012-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012-30I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6012A-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012A-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
Holtek
Quantity:
175
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6012A-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6012A-30I/PT
0
Company:
Part Number:
DSPIC30F6012A-30I/PT
Quantity:
3 200
Company:
Part Number:
DSPIC30F6012A-30I/PT
Quantity:
1 600
Part Number:
DSPIC30F6012AT-20E/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
19.4
The conversion trigger will terminate acquisition and
start the requested conversions.
The SSRC<2:0> bits select the source of the conver-
sion trigger. The SSRC bits provide for up to 4 alternate
sources of conversion trigger.
When SSRC<2:0> = 000, the conversion trigger is
under software control. Clearing the SAMP bit will
cause the conversion trigger.
When SSRC<2:0> = 111 (Auto-Start mode), the con-
version trigger is under A/D clock control. The SAMC
bits select the number of A/D clocks between the start
of acquisition and the start of conversion. This provides
the fastest conversion rates on multiple channels.
SAMC must always be at least 1 clock cycle.
Other trigger sources can come from timer modules or
external interrupts.
19.5
Clearing the ADON bit during a conversion will abort
the current conversion and stop the sampling sequenc-
ing until the next sampling trigger. The ADCBUF will not
be updated with the partially completed A/D conversion
sample. That is, the ADCBUF will continue to contain
the value of the last completed conversion (or the last
value written to the ADCBUF register).
If the clearing of the ADON bit coincides with an auto-
start, the clearing has a higher priority and a new
conversion will not start.
19.6
The ADC conversion requires 14 T
the ADC conversion clock is software selected, using a
six-bit counter. There are 64 possible options for T
EQUATION 19-1:
© 2006 Microchip Technology Inc.
Programming the Start of
Conversion Trigger
Aborting a Conversion
Selecting the ADC Conversion
Clock
T
AD
= T
CY
* (0.5 * (ADCS<5:0> + 1))
CLOCK
ADC CONVERSION
AD
. The source of
dsPIC30F6011/6012/6013/6014
AD
.
The internal RC oscillator is selected by setting the
ADRC bit.
For correct ADC conversions, the ADC conversion
clock (T
time of 334 nsec (for V
Specifications section for minimum T
operating conditions.
Example 19-1 shows a sample calculation for the
ADCS<5:0> bits, assuming a device operating speed
of 30 MIPS.
EXAMPLE 19-1:
Since,
Sampling Time = Acquisition Time + Conversion Time
Therefore,
Sampling Rate =
If SSRC<2:0> = ‘111’ and SAMC<4:0> = ‘00001’
Therefore,
Set ADCS<5:0> = 19
AD
ADCS<5:0> = 2
Minimum T
) must be selected to ensure a minimum T
Actual T
= ~200 kHz
= 1 T
= 15 x 334 nsec
AD
T
(15 x 334 nsec)
AD
CY
AD
= 2 •
= 19.04
=
=
= 334 nsec
ADC CONVERSION
CLOCK AND SAMPLING
RATE CALCULATION
DD
= 334 nsec
= 33 .33 nsec (30 MIPS)
+ 14 T
T
33.33 nsec
1
= 5V). Refer to the Electrical
T
T
CY
2
AD
33.33 nsec
CY
334 nsec
2
AD
(ADCS<5:0> + 1)
– 1
DS70117F-page 137
(19 + 1)
AD
– 1
under other
AD

Related parts for DSPIC30F6012