DSPIC30F6012 MICROCHIP [Microchip Technology], DSPIC30F6012 Datasheet - Page 115

no-image

DSPIC30F6012

Manufacturer Part Number
DSPIC30F6012
Description
High-Performance, 16-Bit Digital Signal Controllers
Manufacturer
MICROCHIP [Microchip Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6012-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012-20I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012-20I/PF
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
DSPIC30F6012-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012-30I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6012A-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012A-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
Holtek
Quantity:
175
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6012A-30I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F6012A-30I/PT
0
Company:
Part Number:
DSPIC30F6012A-30I/PT
Quantity:
3 200
Company:
Part Number:
DSPIC30F6012A-30I/PT
Quantity:
1 600
Part Number:
DSPIC30F6012AT-20E/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
17.3
The CAN module can operate in one of several Operation
modes selected by the user. These modes include:
• Initialization Mode
• Disable Mode
• Normal Operation Mode
• Listen Only Mode
• Loopback Mode
• Error Recognition Mode
Modes are requested by setting the REQOP<2:0> bits
(CiCTRL<10:8>). Entry into a mode is Acknowledged
by monitoring the OPMODE<2:0> bits (CiCTRL<7:5>).
The module will not change the mode and the
OPMODE bits until a change in mode is acceptable,
generally during bus Idle time which is defined as at
least 11 consecutive recessive bits.
17.3.1
In the Initialization mode, the module will not transmit or
receive. The error counters are cleared and the inter-
rupt flags remain unchanged. The programmer will
have access to configuration registers that are access
restricted in other modes. The module will protect the
user from accidentally violating the CAN protocol
through programming errors. All registers which control
the configuration of the module can not be modified
while the module is on-line. The CAN module will not
be allowed to enter the Configuration mode while a
transmission is taking place. The Configuration mode
serves as a lock to protect the following registers.
• All Module Control Registers
• Baud Rate and Interrupt Configuration Registers
• Bus Timing Registers
• Identifier Acceptance Filter Registers
• Identifier Acceptance Mask Registers
17.3.2
In Disable mode, the module will not transmit or
receive. The module has the ability to set the WAKIF bit
due to bus activity, however, any pending interrupts will
remain and the error counters will retain their value.
If the REQOP<2:0> bits (CiCTRL<10:8>) = 001, the
module will enter the Module Disable mode. If the module
is active, the module will wait for 11 recessive bits on the
CAN bus, detect that condition as an Idle bus, then
accept the module disable command. When the
OPMODE<2:0> bits (CiCTRL<7:5>) = 001, that indi-
cates whether the module successfully went into Module
Disable mode. The I/O pins will revert to normal I/O
function when the module is in the Module Disable mode.
© 2006 Microchip Technology Inc.
Modes of Operation
INITIALIZATION MODE
DISABLE MODE
dsPIC30F6011/6012/6013/6014
The module can be programmed to apply a low-pass
filter function to the CiRX input line while the module or
the CPU is in Sleep mode. The WAKFIL bit
(CiCFG2<14>) enables or disables the filter.
17.3.3
Normal
REQOP<2:0> = 000. In this mode, the module is acti-
vated and the I/O pins will assume the CAN bus func-
tions. The module will transmit and receive CAN bus
messages via the CxTX and CxRX pins.
17.3.4
If the Listen Only mode is activated, the module on the
CAN bus is passive. The transmitter buffers revert to
the port I/O function. The receive pins remain inputs.
For the receiver, no error flags or Acknowledge signals
are sent. The error counters are deactivated in this
state. The Listen Only mode can be used for detecting
the baud rate on the CAN bus. To use this, it is neces-
sary that there are at least two further nodes that
communicate with each other.
17.3.5
The module can be set to ignore all errors and receive
any message. The Error Recognition mode is activated
by setting REQOP<2:0> = ‘111’. In this mode, the data
which is in the message assembly buffer until the time
an error occurred, is copied in the receive buffer and
can be read via the CPU interface.
17.3.6
If the Loopback mode is activated, the module will con-
nect the internal transmit signal to the internal receive
signal at the module boundary. The transmit and
receive pins revert to their port I/O function.
Note:
Operating
Typically, if the CAN module is allowed to
transmit in a particular mode of operation
and a transmission is requested immedi-
ately after the CAN module has been
placed in that mode of operation, the mod-
ule waits for 11 consecutive recessive bits
on the bus before starting transmission. If
the user switches to Disable Mode within
this 11-bit period, then this transmission is
aborted and the corresponding TXABT bit
is set and TXREQ bit is cleared.
NORMAL OPERATION MODE
LISTEN ONLY MODE
LISTEN ALL MESSAGES MODE
LOOPBACK MODE
mode
is
DS70117F-page 113
selected
when

Related parts for DSPIC30F6012