ADP3208 ON Semiconductor, ADP3208 Datasheet - Page 18

no-image

ADP3208

Manufacturer Part Number
ADP3208
Description
7-bit, Programmable, Dual-phase, Mobile, Cpu, Synchronous Buck Controller
Manufacturer
ON Semiconductor
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADP3208
Manufacturer:
ON/安森美
Quantity:
20 000
Part Number:
ADP3208AJCPZ
Manufacturer:
AD
Quantity:
350
Company:
Part Number:
ADP3208AJCPZ
Quantity:
2 300
Part Number:
ADP3208AJCPZ-RL
Manufacturer:
SEIKO
Quantity:
35 000
Part Number:
ADP3208AJCPZ-RL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADP3208CJCPZ-RL
Manufacturer:
AD
Quantity:
4 500
Part Number:
ADP3208CJCPZ-RL
Manufacturer:
ON/安森美
Quantity:
20 000
Part Number:
ADP3208D
Manufacturer:
ON/安森美
Quantity:
20 000
Company:
Part Number:
ADP3208DJCPZ
Quantity:
3 700
Part Number:
ADP3208DJCPZ-RL
Manufacturer:
ON Semiconductor
Quantity:
10
Part Number:
ADP3208DJCPZ-RL
Manufacturer:
ON/安森美
Quantity:
20 000
Company:
Part Number:
ADP3208DJCPZ-RL
Quantity:
4 576
Part Number:
ADP3208JCPZ-RL
Manufacturer:
Allen-Bradley
Quantity:
12
Part Number:
ADP3208JCPZ-RL
Manufacturer:
ST
0
ADP3208
Setting Switch Frequency
Master Clock Frequency in PWM Mode
When the ADP3208 runs in PWM, the clock frequency is set by
an external resistor connected from the RT pin to GND. The
frequency is constant at a given VID code but varies with the
VID voltage: the lower the VID voltage, the lower the clock
frequency. The variation of clock frequency with VID voltage
maintains constant V
efficiency at lower VID voltages. Figure 15 shows the
relationship between clock frequency and VID voltage,
parameterized by RT resistance.
To determine the switching frequency per phase, divide the
clock by the number of phases in use.
Switching Frequency in RPM Mode—
Single-Phase Operation
In single-phase RPM mode, the switching frequency is
controlled by the ripple voltage on the COMP pin, rather than
by the master clock. Each time the COMP pin voltage exceeds
the RPM pin voltage threshold level determined by the VID
voltage and the external resistor connected between RPM and
VRPM, an internal ramp signal is started and DRVH1 is driven
high. The slew rate of the internal ramp is programmed by the
current entering the RAMP pin. One-third of the RAMP
current charges an internal ramp capacitor (5 pF typical) and
creates a ramp. When the internal ramp signal intercepts the
COMP voltage, the DRVH1 pin is reset low.
In continuous current mode, the switching frequency of RPM
operation is almost constant. While in discontinuous current
conduction mode, the switching frequency is reduced as a
function of the load current.
DIFFERENTIAL SENSING OF OUTPUT VOLTAGE
The ADP3208 combines differential sensing with a high accuracy
VID DAC, referenced by a precision band gap source and a low
offset error amplifier, to meet the rigorous accuracy requirement
of the Intel IMVP-6+ specification. In steady-state mode, the
combination of the VID DAC and error amplifier maintain the
output voltage for a worst-case scenario within ±8 mV of the
full operating output voltage and temperature range.
The CPU core output voltage is sensed between the FB and
FBRTN pins. FB should be connected through a resistor to the
positive regulation point—the VCC remote sensing pin of the
microprocessor. FBRTN should be connected directly to the
negative remote sensing point—the V
CPU. The internal VID DAC and precision voltage reference
are referenced to FBRTN and have a maximum current of
200 μA for guaranteed accurate remote sensing.
CORE
ripple and improves power conversion
SS
sensing point of the
Rev. 1 | Page 18 of 38 | www.onsemi.com
OUTPUT CURRENT SENSING
The ADP3208 includes a dedicated current sense amplifier (CSA)
to monitor the total output current of the converter for proper
voltage positioning vs. load current and for over current
detection. Sensing the current delivered to the load is an
inherently more accurate method than detecting peak current
or sampling the current across a sense element, such as the low-
side MOSFET. The current sense amplifier can be configured
several ways, depending on system optimization objectives, and
the current information can be obtained by
At the positive input of the CSA, the CSREF pin is connected to
the output voltage. At the negative input (that is, the CSSUM pin
of the CSA), signals from the sensing element (in the case of
inductor DCR sensing, signals from the switch node side of the
output inductors) are summed together by series summing
resistors. The feedback resistor between the CSCOMP and
CSSUM pins sets the gain of the current sense amplifier, and a
filter capacitor is placed in parallel with this resistor. The
current information is then given as the voltage difference
between the CSCOMP and CSREF pins. This signal is used
internally as a differential input for the current limit
comparator.
An additional resistor divider connected between the CSCOMP
and CSREF pins with the midpoint connected to the LLINE pin
can be used to set the load line required by the microprocessor
specification. The current information to set the load line is
then given as the voltage difference between the LLINE and
CSREF pins. This configuration allows the load line slope to be
set independent from the current limit threshold. If the current
limit threshold and load line do not have to be set independently,
the resistor divider between the CSCOMP and CSREF pins can
be omitted and the CSCOMP pin can be connected directly to
LLINE. To disable voltage positioning entirely (that is, to set no
load line), LLINE should be tied to CSREF.
To provide the best accuracy for current sensing, the CSA has a
low offset input voltage and the sensing gain is set by an external
resistor ratio.
ACTIVE IMPEDANCE CONTROL MODE
To control the dynamic output voltage droop as a function of
the output current, the signal that is proportional to the total
output current, converted from the voltage difference between
LLINE and CSREF, can be scaled to be equal to the required
droop voltage. This droop voltage is calculated by multiplying
Output inductor ESR sensing without the use of a
thermistor for the lowest cost
Output inductor ESR sensing with the use of a thermistor
that tracks inductor temperature to improve accuracy
Discrete resistor sensing for the highest accuracy

Related parts for ADP3208