ATmega48 Automotive Atmel Corporation, ATmega48 Automotive Datasheet - Page 162

no-image

ATmega48 Automotive

Manufacturer Part Number
ATmega48 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of ATmega48 Automotive

Flash (kbytes)
4 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
256
Self Program Memory
NO
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 125
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
162
ATmega48/88/168 Automotive
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.
• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to
marized below:
Table 16-2.
• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to
functionality is summarized below:
Table 16-3.
• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f
shown in the following table:
Table 16-4.
SPI2X
0
0
0
0
1
1
1
1
CPHA
CPOL
CPOL Functionality
CPHA Functionality
Relationship Between SCK and the Oscillator Frequency
0
1
0
1
Figure 16-3
SPR1
0
0
1
1
0
0
1
1
and
Figure 16-4
Figure 16-3
Leading Edge
Leading Edge
Sample
Falling
Rising
Setup
SPR0
0
1
0
1
0
1
0
1
for an example. The CPOL functionality is sum-
and
Figure 16-4
SCK Frequency
f
f
f
f
f
f
f
f
osc
osc
osc
osc
osc
osc
osc
osc
/
/
/
/
/
/
/
/
4
16
64
128
2
8
32
64
for an example. The CPOL
Trailing Edge
Trailing Edge
Sample
Falling
Rising
Setup
7530I–AVR–02/10
osc
is

Related parts for ATmega48 Automotive