PIC18LF8680-I/PT Microchip Technology, PIC18LF8680-I/PT Datasheet - Page 196

no-image

PIC18LF8680-I/PT

Manufacturer Part Number
PIC18LF8680-I/PT
Description
IC, 8BIT MCU, PIC18LF, 40MHZ, PLCC-64
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18LF8680-I/PT

Controller Family/series
PIC18
No. Of I/o's
39
Eeprom Memory Size
1024Byte
Ram Memory Size
3328Byte
Cpu Speed
40MHz
No. Of Timers
4
Core Size
8 Bit
Program Memory Size
32768 Words
Core Processor
PIC
Speed
40MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
68
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.25K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TFQFP
Rohs Compliant
Yes
Processor Series
PIC18LF
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3328 B
Interface Type
I2C, SPI, AUSART, CAN
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
69
Number Of Timers
8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM183032
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18LF8680-I/PT
Manufacturer:
Microchip
Quantity:
230
Part Number:
PIC18LF8680-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F6585/8585/6680/8680
17.3.5
The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2, Figure 17-2) is to
broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be dis-
abled (programmed as an input). The SSPSR register
will continue to shift in the signal present on the SDI pin
at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and status bits
appropriately set). This could be useful in receiver
applications as a “Line Activity Monitor” mode.
The clock polarity is selected by appropriately program-
ming the CKP bit (SSPCON1<4>). This then, would
give waveforms for SPI communication, as shown in
FIGURE 17-3:
DS30491C-page 194
Write to
SSPBUF
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
SCK
(CKP = 0
CKE = 1)
SCK
(CKP = 1
CKE = 1)
SDO
(CKE = 0)
SDO
(CKE = 1)
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SDI
(SMP = 1)
Input
Sample
(SMP = 1)
SSPIF
SSPSR to
SSPBUF
MASTER MODE
SPI MODE WAVEFORM (MASTER MODE)
bit 7
bit 7
bit 7
bit 7
bit 6
bit 6
bit 5
bit 5
bit 4
bit 4
Figure 17-3, Figure 17-5 and Figure 17-6, where the
MSB is transmitted first. In Master mode, the SPI clock
rate (bit rate) is user programmable to be one of the
following:
• F
• F
• F
• Timer2 output/2
This allows a maximum data rate (at 40 MHz) of
10.00 Mbps.
Figure 17-3 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.
bit 3
bit 3
OSC
OSC
OSC
/4 (or T
/16 (or 4 • T
/64 (or 16 • T
bit 2
bit 2
CY
)
bit 1
bit 1
CY
CY
)
)
 2004 Microchip Technology Inc.
bit 0
bit 0
bit 0
bit 0
Next Q4 Cycle
after Q2
4 Clock
Modes

Related parts for PIC18LF8680-I/PT