ATMEGA64-16MJ Atmel, ATMEGA64-16MJ Datasheet - Page 301

no-image

ATMEGA64-16MJ

Manufacturer Part Number
ATMEGA64-16MJ
Description
IC MCU AVR 64K 5V 16MHZ 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA64-16MJ

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Reading the EEPROM
Programming the
Fuse Low Bits
Programming the
Fuse High Bits
Programming the
Extended Fuse Bits
2490Q–AVR–06/10
The algorithm for reading the EEPROM memory is as follows (refer to
on page 298
1. A: Load Command “0000 0011”.
2. G: Load Address High Byte (0x00 - 0xFF).
3. B: Load Address Low Byte (0x00 - 0xFF).
4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.
5. Set OE to “1”.
The algorithm for programming the Fuse Low bits is as follows (refer to
on page 298
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “0” and BS2 to “0”.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
The algorithm for programming the Fuse High bits is as follows (refer to
Flash” on page 298
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.
The algorithm for programming the Extended Fuse bits is as follows (refer to
Flash” on page 298
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS2 to “1” and BS1 to “0”. This selects extended data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS2 to “0”. This selects low data byte.
Figure 142. Programming the FUSES Waveforms
RESET +12V
RDY/BSY
PAGEL
XTAL1
DATA
BS2
XA1
XA0
BS1
WR
OE
for details on Command and Address loading):
for details on Command and Data loading):
0x40
A
for details on Command and Data loading):
for details on Command and Data loading):
DATA
C
Write Fuse Low byte
XX
0x40
A
DATA
C
Write Fuse high byte
XX
0x40
A
ATmega64(L)
“Programming the Flash”
“Programming the Flash”
DATA
C
Write Extended Fuse byte
“Programming the
“Programming the
XX
301

Related parts for ATMEGA64-16MJ