ATMEGA162V-1MC Atmel, ATMEGA162V-1MC Datasheet - Page 165

IC MCU AVR 16K 1.8V 8MHZ 44-QFN

ATMEGA162V-1MC

Manufacturer Part Number
ATMEGA162V-1MC
Description
IC MCU AVR 16K 1.8V 8MHZ 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA162V-1MC

Core Processor
AVR
Core Size
8-Bit
Speed
1MHz
Connectivity
EBI/EMI, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
44-VQFN Exposed Pad
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Data Converters
-
AVR USART vs. AVR UART –
Compatibility
Clock Generation
2513C–AVR–09/02
The USART is fully compatible with the AVR UART regarding:
However, the receive buffering has two improvements that will affect the compatibility in
some special cases:
The following control bits have changed name, but have same functionality and register
location:
The Clock Generation logic generates the base clock for the Transmitter and Receiver.
The USART supports four modes of clock operation: Normal asynchronous, Double
Speed asynchronous, Master synchronous and Slave synchronous mode. The UMSEL
bit in USART Control and Status Register C (UCSRC) selects between asynchronous
and synchronous operation. Double Speed (asynchronous mode only) is controlled by
the U2X found in the UCSRA Register. When using synchronous mode (UMSEL = 1),
the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock
source is internal (Master mode) or external (Slave mode). The XCK pin is only active
when using synchronous mode.
Figure 76 shows a block diagram of the clock generation logic.
Figure 76. Clock Generation Logic, Block Diagram
DDR_XCK
XCK
Pin
Bit locations inside all USART Registers
Baud Rate Generation
Transmitter Operation
Transmit Buffer Functionality
Receiver Operation
A second buffer register has been added. The two buffer registers operate as a
circular FIFO buffer. Therefore the UDR must only be read once for each incoming
data! More important is the fact that the error flags (FE and DOR) and the ninth data
bit (RXB8) are buffered with the data in the receive buffer. Therefore the status bits
must always be read before the UDR Register is read. Otherwise the error status
will be lost since the buffer state is lost.
The Receiver Shift Register can now act as a third buffer level. This is done by
allowing the received data to remain in the serial Shift Register (see Figure 75) if the
buffer registers are full, until a new start bit is detected. The USART is therefore
more resistant to Data OverRun (DOR) error conditions.
CHR9 is changed to UCSZ2.
OR is changed to DOR.
xcko
xcki
OSC
Down-Counter
Prescaling
Register
UBRR
Sync
UBRR+1
fosc
Detector
UCPOL
Edge
/ 2
ATmega162(V/U/L)
/ 4
/ 2
DDR_XCK
U2X
0
1
0
1
0
1
1
0
UMSEL
txclk
rxclk
165

Related parts for ATMEGA162V-1MC