AT90CAN32-16MU Atmel, AT90CAN32-16MU Datasheet - Page 185

IC MCU AVR 32K FLASH 64-QFN

AT90CAN32-16MU

Manufacturer Part Number
AT90CAN32-16MU
Description
IC MCU AVR 32K FLASH 64-QFN
Manufacturer
Atmel
Series
AVR® 90CANr
Datasheets

Specifications of AT90CAN32-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
Processor Series
AT90CANx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
2
Operating Supply Voltage
0.5 V to 0.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATDVK90CAN1, ATADAPCAN01
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Cpu Family
90C
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
2KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
QFN EP
Package
64QFN EP
Family Name
90C
Maximum Speed
16 MHz
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATDVK90CAN1 - KIT DEV FOR AT90CAN128 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90CAN32-16MU
Manufacturer:
ATMEL
Quantity:
717
17.7.2
17.7.3
7679H–CAN–08/08
Sending Frames with 9 Data Bit
Transmitter Flags and Interrupts
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in UCS-
RnB before the low byte of the character is written to UDRn. The following code examples show
a transmit function that handles 9-bit characters. For the assembly code, the data to be sent is
assumed to be stored in registers R17:R16.
Notes:
The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.
The USARTn Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.
Assembly Code Example
C Code Example
USART0_Transmit:
void USART0_Transmit (unsigned int data)
{
}
; Wait for empty transmit buffer
lds
sbrs
rjmp
; Copy 9th bit from r17-bit0 to TXB80 via T-bit of SREG
lds
bst
bld
sts
; Put LSB data (r16) into buffer, sends the data
sts
ret
/* Wait for empty transmit buffer */
while ( !( UCSR0A & (1<<UDRE0)));
/* Copy 9th bit to TXB8 */
UCSR0B &= ~(1<<TXB80);
if ( data & 0x0100 )
/* Put data into buffer, sends the data */
UDR0 = data;
1. These transmit functions are written to be general functions. They can be optimized if the con-
2. The example code assumes that the part specific header file is included.
UCSR0B |= (1<<TXB80);
tents of the UCSR0B is static. For example, only the TXB80 bit of the UCSRB0 Register is
used after initialization.
r18, UCSR0A
r18, UDRE0
USART0_Transmit
r18, UCSR0B
r17, 0
r18, TXB80
UCSR0B, r18
UDR0, r16
(1)(2)
(1)(2)
AT90CAN32/64/128
185

Related parts for AT90CAN32-16MU