C8051F310-GQ Silicon Laboratories Inc, C8051F310-GQ Datasheet - Page 93

IC 8051 MCU 16K FLASH 32LQFP

C8051F310-GQ

Manufacturer Part Number
C8051F310-GQ
Description
IC 8051 MCU 16K FLASH 32LQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F31xr
Datasheets

Specifications of C8051F310-GQ

Core Size
8-Bit
Program Memory Size
16KB (16K x 8)
Oscillator Type
Internal
Core Processor
8051
Speed
25MHz
Connectivity
SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
POR, PWM, Temp Sensor, WDT
Number Of I /o
29
Program Memory Type
FLASH
Ram Size
1.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 21x10b
Operating Temperature
-40°C ~ 85°C
Package / Case
32-LQFP
No. Of I/o's
29
Ram Memory Size
1280Byte
Cpu Speed
25MHz
No. Of Timers
4
No. Of Pwm Channels
5
Digital Ic Case
RoHS Compliant
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
770-1006 - ISP 4PORT FOR SILABS C8051F MCU336-1445 - ADAPTER PROGRAM TOOLSTICK F310336-1329 - KIT REF DESIGN SENSORLESS BLDC336-1253 - DEV KIT FOR C8051F310/F311
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
336-1252

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F310-GQ
Manufacturer:
SiliconL
Quantity:
4 998
Part Number:
C8051F310-GQ
Manufacturer:
SILICON
Quantity:
411
Part Number:
C8051F310-GQ
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F310-GQ
Manufacturer:
SILICONLABS原装
Quantity:
20 000
Part Number:
C8051F310-GQR
Manufacturer:
SILICON
Quantity:
3 300
Part Number:
C8051F310-GQR
Manufacturer:
SILICON41
Quantity:
120
Part Number:
C8051F310-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F310-GQR
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
Part Number:
C8051F310-GQR
0
8.3.
The CIP-51 includes an extended interrupt system supporting a total of 14 interrupt sources with two prior-
ity levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies
according to the specific version of the device. Each interrupt source has one or more associated interrupt-
pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition,
the associated interrupt-pending flag is set to logic 1.
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE-EIE1). However, interrupts must first be globally enabled by setting the EA bit
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
all interrupt sources regardless of the individual interrupt-enable settings.
Note: Any instruction that clears the EA bit should be immediately followed by an instruction that
has two or more opcode bytes. For example:
// in 'C':
EA = 0;
EA = 0;
; in assembly:
CLR
CLR
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears
the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How-
ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is
followed by a multi-cycle instruction, the interrupt will not be taken.
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
Bits7–0: B: B Register.
R/W
B.7
EA
EA
Bit7
Interrupt Handler
This register serves as a second accumulator for certain arithmetic operations.
// clear EA bit
// ... followed by another 2-byte opcode
; clear EA bit
; ... followed by another 2-byte opcode
R/W
B.6
Bit6
R/W
B.5
Bit5
SFR Definition 8.6.
R/W
B.4
Bit4
Rev. 1.7
R/W
B.3
Bit3
C8051F310/1/2/3/4/5/6/7
B: B Register
R/W
B.2
Bit2
R/W
B.1
Bit1
(bit addressable)
R/W
B.0
Bit0
SFR Address:
00000000
Reset Value
0xF0
93

Related parts for C8051F310-GQ