ATMEGA645V-8AU Atmel, ATMEGA645V-8AU Datasheet - Page 190

IC AVR MCU FLASH 64K 64TQFP

ATMEGA645V-8AU

Manufacturer Part Number
ATMEGA645V-8AU
Description
IC AVR MCU FLASH 64K 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA645V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, UART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
54
Eeprom Memory Size
2KB
Ram Memory Size
4KB
Cpu Speed
8MHz
No. Of Timers
3
Rohs Compliant
Yes
Data Rom Size
2 KB
Height
1 mm
Length
14 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
14 mm
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA645V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA645V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
2570M–AVR–04/11
Figure 20-4. Two-wire Mode Operation, Simplified Diagram
Figure 20-4
It is only the physical layer that is shown since the system operation is highly dependent of the
communication scheme used. The main differences between the Master and Slave operation at
this level, is the serial clock generation which is always done by the Master, and only the Slave
uses the clock control unit. Clock generation must be implemented in software, but the shift
operation is done automatically by both devices. Note that only clocking on negative edge for
shifting data is of practical use in this mode. The slave can insert wait states at start or end of
transfer by forcing the SCL clock low. This means that the Master must always check if the SCL
line was actually released after it has generated a positive edge.
Since the clock also increments the counter, a counter overflow can be used to indicate that the
transfer is completed. The clock is generated by the master by toggling the USCK pin via the
PORT Register.
The data direction is not given by the physical layer. A protocol, like the one used by the TWI-
bus, must be implemented to control the data flow.
Figure 20-5. Two-wire Mode, Typical Timing Diagram
Referring to the timing diagram (Figure 20-5.), a bus transfer involves the following steps:
SDA
SCL
SLAVE
MASTER
shows two USI units operating in Two-wire mode, one as Master and one as Slave.
Bit7
Bit7
A B
S
Bit6
Bit6
Bit5
Bit5
C
ADDRESS
1 - 7
Bit4
Bit4
Bit3
Bit3
R/W
8
Bit2
Bit2
D
Bit1
Bit1
ACK
9
Bit0
Bit0
E
ATmega325/3250/645/6450
DATA
1 - 8
Two-wire Clock
Control Unit
ACK
9
PORTxn
DATA
1 - 8
HOLD
SCL
SDA
SCL
SDA
SCL
ACK
9
VCC
P
F
190

Related parts for ATMEGA645V-8AU