ATMEGA8515L-8PU Atmel, ATMEGA8515L-8PU Datasheet - Page 126

IC AVR MCU 8K 8MHZ 3V 40DIP

ATMEGA8515L-8PU

Manufacturer Part Number
ATMEGA8515L-8PU
Description
IC AVR MCU 8K 8MHZ 3V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA8515L-8PU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
EBI/EMI, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI, USART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
35
Number Of Timers
2
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
8MHz
Total Internal Ram Size
512Byte
# I/os (max)
35
Number Of Timers - General Purpose
2
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Through Hole
Pin Count
40
Package Type
PDIP W
Controller Family/series
AVR MEGA
No. Of I/o's
35
Eeprom Memory Size
512Byte
Ram Memory Size
512Byte
Cpu Speed
8MHz
Rohs Compliant
Yes
For Use With
ATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8515L-8PU
Manufacturer:
ATMEL
Quantity:
1 680
Part Number:
ATMEGA8515L-8PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA8515L-8PU
Quantity:
60
126
ATmega8515(L)
When configured as a Master, the SPI interface has no automatic control of the SS line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the 8 bits into the Slave. After shifting one byte, the SPI clock generator
stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE)
in the SPCR Register is set, an interrupt is requested. The Master may continue to shift
the next byte by writing it into SPDR, or signal the end of packet by pulling high the
Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for later
use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS pin is driven high. In this state, software may update the contents of
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE,
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming byte
will be kept in the Buffer Register for later use.
Figure 61. SPI Master-Slave Interconnection
The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To
ensure correct sampling of the clock signal, the frequency of the SPI clock should never
exceed f
When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 55. For more details on automatic port overrides, refer to
“Alternate Port Functions” on page 63.
Table 55. SPI Pin Overrides
Note:
MOSI
MISO
SCK
Pin
SS
1. See “Alternate Functions Of Port B” on page 66 for a detailed description of how to
osc
CLOCK GENERATOR
/4.
define the direction of the user defined SPI pins.
MSB
8-BIT SHIFT REGISTER
Direction, Master SPI
User Defined
Input
User Defined
User Defined
SPI
MASTER
(1)
LSB
V
MISO
MOSI
SCK
SS
CC
MISO
MOSI
SCK
SS
Direction, Slave SPI
Input
User Defined
Input
Input
MSB
8-BIT SHIFT REGISTER
SLAVE
SHIFT
ENABLE
LSB
2512F–AVR–12/03

Related parts for ATMEGA8515L-8PU