PIC18F24J10-I/SO Microchip Technology, PIC18F24J10-I/SO Datasheet - Page 199

IC PIC MCU FLASH 8KX16 28SOIC

PIC18F24J10-I/SO

Manufacturer Part Number
PIC18F24J10-I/SO
Description
IC PIC MCU FLASH 8KX16 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F24J10-I/SO

Program Memory Type
FLASH
Program Memory Size
16KB (8K x 16)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1024 B
Interface Type
SPI, I2C, MSSP, USART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
2 V to 3.6 V
Maximum Operating Temperature
+ 100 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM183032, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC162074 - HEADER INTRFC MPLAB ICD2 44TQFPAC162067 - HEADER INTRFC MPLAB ICD2 40/28P
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F24J10-I/SO
Quantity:
6 234
17.1
The BRG is a dedicated 8-bit or 16-bit generator that
supports both the Asynchronous and Synchronous
modes of the EUSART. By default, the BRG operates
in 8-bit mode; setting the BRG16 bit (BAUDCON<3>)
selects 16-bit mode.
The SPBRGH:SPBRG register pair controls the period
of a free-running timer. In Asynchronous mode, bits,
BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>), also
control the baud rate. In Synchronous mode, BRGH is
ignored. Table 17-1 shows the formula for computation
of the baud rate for different EUSART modes which
only apply in Master mode (internally generated clock).
Given the desired baud rate and F
integer value for the SPBRGH:SPBRG registers can be
calculated using the formulas in Table 17-1. From this,
the error in baud rate can be determined. An example
calculation is shown in Example 17-1. Typical baud
rates and error values for the various Asynchronous
modes
TABLE 17-1:
© 2009 Microchip Technology Inc.
Legend: x = Don’t care, n = value of SPBRGH:SPBRG register pair
SYNC
0
0
0
0
1
1
are
Baud Rate Generator (BRG)
Configuration Bits
shown
BAUD RATE FORMULAS
BRG16
0
0
1
1
0
1
in
Table 17-2.
BRGH
0
1
0
1
x
x
OSC
, the nearest
It
may
BRG/EUSART Mode
be
16-bit/Asynchronous
16-bit/Asynchronous
16-bit/Synchronous
8-bit/Asynchronous
8-bit/Asynchronous
8-bit/Synchronous
PIC18F45J10 FAMILY
advantageous to use the high baud rate (BRGH = 1) or
the 16-bit BRG to reduce the baud rate error, or
achieve a slow baud rate for a fast oscillator frequency.
Writing a new value to the SPBRGH:SPBRG registers
causes the BRG timer to be reset (or cleared). This
ensures the BRG does not wait for a timer overflow
before outputting the new baud rate.
17.1.1
The device clock is used to generate the desired baud
rate. When one of the power-managed modes is
entered, the new clock source may be operating at a
different frequency. This may require an adjustment to
the value in the SPBRG register pair.
17.1.2
The data on the RX pin is sampled three times by a
majority detect circuit to determine if a high or a low
level is present at the RX pin.
OPERATION IN POWER-MANAGED
MODES
SAMPLING
Baud Rate Formula
F
F
F
OSC
OSC
OSC
/[64 (n + 1)]
/[16 (n + 1)]
/[4 (n + 1)]
DS39682E-page 197

Related parts for PIC18F24J10-I/SO